.. _process_definitions: Stochastic process definitions ============================== In this document, we note: - :math:`X: \Omega \times\cD \rightarrow \Rset^d` a multivariate stochastic process of dimension :math:`d`, where :math:`\omega \in \Omega` is an event, :math:`\cD` is a domain of :math:`\Rset^n`, :math:`\vect{t}\in \cD` is a multivariate index and :math:`X(\omega, \vect{t}) \in \Rset^d`; - :math:`X_{\vect{t}}: \Omega \rightarrow \Rset^d` the random variable at index :math:`\vect{t} \in \cD` defined by :math:`X_{\vect{t}}(\omega)=X(\omega, \vect{t})`; - :math:`X(\omega): \cD \rightarrow \Rset^d` a realization of the process :math:`X`, for a given :math:`\omega \in \Omega` defined by :math:`X(\omega)(\vect{t})=X(\omega, \vect{t})`. | If :math:`n=1`, :math:`t` may be interpreted as a time stamp to recover the classical notation of a stochastic process. | If the process is a second order process, we note: - :math:`m : \cD \rightarrow \Rset^d` its *mean function*, defined by :math:`m(\vect{t})=\Expect{X_{\vect{t}}}`, - :math:`C : \cD \times \cD \rightarrow \cM_{d \times d}(\Rset)` its *covariance function*, defined by :math:`C(\vect{s}, \vect{t})=\Expect{(X_{\vect{s}}-m(\vect{s}))(X_{\vect{t}}-m(\vect{t}))^t}`, - :math:`R : \cD \times \cD \rightarrow \mathcal{M}_{d \times d}(\Rset)` its *correlation function*, defined for all :math:`(\vect{s}, \vect{t})`, by :math:`R(\vect{s}, \vect{t})` such that for all :math:`(i,j)`, :math:`R_{ij}(\vect{s}, \vect{t})=C_{ij}(\vect{s}, \vect{t})/\sqrt{C_{ii}(\vect{s}, \vect{t})C_{jj}(\vect{s}, \vect{t})}`. We recall here some useful definitions. **Spatial (temporal) and Stochastic Mean** The *spatial mean* of the process :math:`X` is the function :math:`m: \Omega \rightarrow \Rset^d` defined by: .. math:: :label: spatMean \displaystyle m(\omega)=\frac{1}{|\cD|} \int_{\cD} X(\omega)(\vect{t})\, d\vect{t} If :math:`n=1` and if the mesh is a regular grid :math:`(t_0, \dots, t_{N-1})`, then the spatial mean corresponds to the *temporal mean* defined by: .. math:: :label: tempMean m(\omega) = \frac{1}{t_{N-1} - t_0} \int_{t_0}^{t_{N-1}}X(\omega)(t) \, dt | The spatial mean is estimated from one realization of the process (see the use case on Field or Time series). | The *stochastic mean* of the process :math:`X` is the function :math:`g: \cD \rightarrow \Rset^d` defined by: .. math:: :label: stocMean \displaystyle g(\vect{t}) = \Expect{X_{\vect{t}}} | The stochastic mean is estimated from a sample of realizations of the process (see the use case on the Process sample). | For an *ergodic process*, the stochastic mean and the spatial mean are equal and constant (equal to the constant vector noted :math:`\vect{c}`): .. math:: :label: ergodic \forall \omega\in \Omega, \, \forall \vect{t} \in \cM, \, m(\omega)= g(\vect{t}) = \vect{c} **Normal process** A stochastic process is *normal* if all its finite dimensional joint distributions are normal, which means that for all :math:`k \in \Nset` and :math:`I_k \in \Nset^*`, with :math:`\mathrm{card} I_k = k`, there exist :math:`\vect{m}_1,\dots,\vect{m}_k\in\Rset^d` and :math:`\mat{C}_{1,\dots,k}\in\mathcal{M}_{kd,kd}(\Rset)` such that: .. math:: \Expect{\exp\left\{i\vect{X}_{I_k}^t \vect{U}_{k} \right\}} = \exp{\left\{i\vect{U}_{k}^t\vect{M}_{k}-\frac{1}{2}\vect{U}_{k}^t\mat{C}_{1,\dots,k}\vect{U}_{k}\right\}} where :math:`\vect{X}_{I_k}^t = (X_{\vect{t}_1}^t, \hdots, X_{\vect{t}_k}^t)`, :math:`\vect{U}_{k}^t = (\vect{u}_{1}^t, \hdots, \vect{u}_{k}^t)` and :math:`\vect{M}_{k}^t = (\vect{m}_{1}^t, \hdots, \vect{m}_{k}^t)` and :math:`\mat{C}_{1,\dots,k}` is the symmetric matrix: .. math:: :label: covMatrix \mat{C}_{1,\dots,k} = \left( \begin{array}{cccc} C(\vect{t}_1, \vect{t}_1) &C(\vect{t}_1, \vect{t}_2) & \hdots & C(\vect{t}_1, \vect{t}_{k}) \\ \hdots & C(\vect{t}_2, \vect{t}_2) & \hdots & C(\vect{t}_2, \vect{t}_{k}) \\ \hdots & \hdots & \hdots & \hdots \\ \hdots & \hdots & \hdots & C(\vect{t}_{k}, \vect{t}_{k}) \end{array} \right) A normal process is entirely defined by its mean function :math:`m` and its covariance function :math:`C` (or correlation function :math:`R`). **Weak stationarity (second order stationarity)** A process :math:`X` is *weakly stationary* or *stationary of second order* if its mean function is constant and its covariance function is invariant by translation: .. math:: :label: stat2order \forall (\vect{s},\vect{t}) \in \cD, & \, m(\vect{t}) = m(\vect{s}) \\ \forall (\vect{s},\vect{t},\vect{h}) \in \cD, & \, C(\vect{s}, \vect{s}+\vect{h}) =C(\vect{t}, \vect{t}+\vect{h}) We note :math:`C^{stat}(\vect{\tau})` for :math:`C(\vect{s}, \vect{s}+\vect{\tau})` as this quantity does not depend on :math:`\vect{s}`. In the continuous case, :math:`\cD` must be equal to :math:`\Rset^n`\ as it is invariant by any translation. In the discrete case, :math:`\cD` is a lattice :math:`\mathcal{L}=(\delta_1 \Zset \times \dots \times \delta_n \Zset)` where :math:`\forall i, \delta_i >0`. **Stationarity** A process :math:`X` is *stationary* if its distribution is invariant by translation: :math:`\forall k \in \Nset`, :math:`\forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD`, :math:`\forall \vect{h}\in \Rset^n`, we have: .. math:: :label: statGen \forall k \in \Nset, \, \forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD, \, \forall \vect{h}\in \Rset^n, \, (X_{\vect{t}_1}, \dots, X_{\vect{t}_k}) \stackrel{\mathcal{D}}{=} (X_{\vect{t}_1+\vect{h}}, \dots, X_{\vect{t}_k+\vect{h}}) **Spectral density function** If :math:`X` is a zero-mean weakly stationary continuous process and if for all :math:`(i,j)`, :math:`C^{stat}_{i,j} : \Rset^n \rightarrow \Rset^n` is :math:`\cL^1(\Rset^n)` (ie :math:`\int_{\Rset^n} |C^{stat}_{i,j}(\vect{\tau})|\, d\vect{\tau}\, < +\infty`), we define the *bilateral spectral density function* :math:`S : \Rset^n \rightarrow \cH^+(d)` where :math:`\mathcal{H}^+(d) \in \mathcal{M}_d(\Cset)` is the set of :math:`d`-dimensional positive definite hermitian matrices, as the Fourier transform of the covariance function :math:`C^{stat}`: .. math:: :label: specdensFunc \forall \vect{f} \in \Rset^n, \,S(\vect{f}) = \int_{\Rset^n}\exp\left\{ -2i\pi <\vect{f},\vect{\tau}> \right\} C^{stat}(\vect{\tau})\, d\vect{\tau} Furthermore, if for all :math:`(i,j)`, :math:`S_{i,j}: \Rset^n \rightarrow \Cset` is :math:`\cL^1(\Cset)` (ie :math:`\int_{\Rset^n} |S_{i,j}(\vect{f})|\, d\vect{f}\, < +\infty`), :math:`C^{stat}` may be evaluated from :math:`S` as follows: .. math:: :label: cspectransform C^{stat}(\vect{\tau}) = \int_{\Rset^n}\exp\left\{ 2i\pi <\vect{f}, \vect{\tau}> \right\}S(\vect{f})\, d\vect{f} In the discrete case, the spectral density is defined for a zero-mean weakly stationary process, where :math:`\cD=(\delta_1 \Zset \times \dots \times \delta_n \Zset)` with :math:`\forall i, \delta_i >0` and where the previous integrals are replaced by sums.