.. _stationary_covariance_model: Parametric stationary covariance models ======================================= | Let :math:`X: \Omega \times \cD \rightarrow \Rset^d` be a multivariate stationary normal process where :math:`\cD \in \Rset^n`. The process is supposed to be zero mean. It is entirely defined by its covariance function :math:`C^{stat}: \cD \rightarrow \mathcal{M}_{d \times d}(\Rset)`, defined by :math:`C^{stat}(\vect{\tau})=\Expect{X_{\vect{s}}X_{\vect{s}+\vect{\tau}}^t}` for all :math:`\vect{s}\in \Rset^n`. | If the process is continuous, then :math:`\cD=\Rset^n`. In the discrete case, :math:`\cD` is a lattice. | This use case illustrates how the User can create a covariance function from parametric models. The library proposes the *multivariate Exponential model* as one of the possible parametric models for the covariance function :math:`C^{stat}`. **The multivariate exponential model** This model defines the covariance function :math:`C^{stat}` by: .. math:: :label: fullMultivariateExponential2 \forall \vect{\tau} \in \cD,\quad C^{stat}( \vect{\tau} )=\left[\mat{A}\mat{\Delta}( \vect{\tau} ) \right] \,\mat{R}\, \left[ \mat{\Delta}( \vect{\tau} )\mat{A}\right] where :math:`\mat{R} \in \mathcal{M}_{d \times d}([-1, 1])` is a correlation matrix, :math:`\mat{\Delta}( \vect{\tau} ) \in \mathcal{M}_{d \times d}(\Rset)` is defined by: .. math:: :label: fullMultivariateExponential3 \mat{\Delta}( \vect{\tau} )= \mbox{Diag}(e^{-\lambda_1|\tau|/2}, \dots, e^{-\lambda_d|\tau|/2}) and :math:`\mat{A}\in \mathcal{M}_{d \times d}(\Rset)` is defined by: .. math:: :label: fullMultivariateExponential4 \mat{A}= \mbox{Diag}(a_1, \dots, a_d) with :math:`\lambda_i>0` and :math:`a_i>0` for any :math:`i`. We call :math:`\vect{a}` the amplitude vector and :math:`\vect{\lambda}` the scale vector. The expression of :math:`C^{stat}` is the combination of: - the matrix :math:`\mat{R}` that models the spatial correlation between the components of the process :math:`X` at any vertex :math:`\vect{t}` (since the process is stationary): .. math:: :label: fullMultivariateExponential1 \forall \vect{t}\in \cD,\quad \mat{R} = \Cor{X_{\vect{t}}, X_{\vect{t}}} - the matrix :math:`\mat{\Delta}( \vect{\tau} )` that models the correlation between the marginal random variables :math:`X^i_{\vect{t}}` and :math:`X^i_{\vect{t}+\vect{\tau}}`: .. math:: \begin{aligned} \Cor{X_{\vect{t}}^i,X^i_{\vect{t}+\vect{\tau}}} = e^{-\lambda_i|\tau|} \end{aligned} - the matrix :math:`\mat{A}` that models the variance of each marginal random variable: .. math:: \begin{aligned} \Var{X_{\vect{t}}} = (a_1, \dots, a_d) \end{aligned} This model is such that: .. math:: :label: diago \begin{aligned} C_{ij}^{stat}(\vect{\tau}) & = a_ie^{-\lambda_i|\tau|/2}R_{i,j}a_je^{-\lambda_j|\tau|/2},\quad i\neq j\\ C_{ii}^{stat}(\vect{\tau}) & = a_ie^{-\lambda_i|\tau|/2}R_{i,i}a_ie^{-\lambda_j|\tau|/2}=a_i^2e^{-\lambda_i|\tau|} \end{aligned} It is possible to define the exponential model from the spatial covariance matrix :math:`\mat{C}^{spat}` rather than the correlation matrix :math:`\mat{R}` : .. math:: :label: relRA \forall \vect{t} \in \cD,\quad \mat{C}^{spat} = \Expect{X_{\vect{t}}X^t_{\vect{t}}} = \mat{A}\,\mat{R}\, \mat{A} .. topic:: API: - See :class:`~openturns.AbsoluteExponential` - See :class:`~openturns.DiracCovarianceModel` - See :class:`~openturns.ExponentialModel` - See :class:`~openturns.ExponentiallyDampedCosineModel` - See :class:`~openturns.GeneralizedExponential` - See :class:`~openturns.MaternModel` - See :class:`~openturns.SquaredExponential` .. topic:: Examples: - See :doc:`/auto_probabilistic_modeling/stochastic_processes/plot_create_stationary_covmodel` - See :doc:`/auto_probabilistic_modeling/stochastic_processes/plot_user_stationary_covmodel`