Note
Click here to download the full example code
Estimate moments from sampleΒΆ
In this example we are going to estimate statistical moments from a sample, eventually from an output variable of interest.
from __future__ import print_function
import openturns as ot
ot.Log.Show(ot.Log.NONE)
Create a sample
# model f
model = ot.SymbolicFunction(["x1", "x2"], ["x1^2+x2", "x2^2+x1"])
# input vector X
inputDist = ot.ComposedDistribution([ot.Normal()] * 2, ot.IndependentCopula(2))
inputDist.setDescription(['X1', 'X2'])
inputVector = ot.RandomVector(inputDist)
# output vector Y=f(X)
output = ot.CompositeRandomVector(model, inputVector)
# sample Y
size = 1000
sample = output.getSample(size)
Estimate mean
sample.computeMean()
[0.923615,1.02297]
Estimate standard deviation
sample.computeStandardDeviation()
[[ 1.65759 0 ]
[ 0.0710817 1.81269 ]]
Estimate variance
sample.computeVariance()
[2.74761,3.2909]
Estimate skewness
sample.computeSkewness()
[1.44617,1.73649]
Estimate kurtosis
sample.computeKurtosis()
[7.00125,8.00153]
Total running time of the script: ( 0 minutes 0.003 seconds)