Note
Click here to download the full example code
Creation of a custom random vectorΒΆ
In this example we are going to create a distribution or copula.
The way to go is inheriting the PythonRandomVector class and overload its methods:
getRealization
getSample
getMean
getCovariance
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m
ot.Log.Show(ot.Log.NONE)
Inherit PythonRandomVector
class RVEC(ot.PythonRandomVector):
def __init__(self):
super(RVEC, self).__init__(2)
self.setDescription(['R', 'S'])
def getRealization(self):
X = [ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()]
return X
def getSample(self, size):
X = []
for i in range(size):
X.append(
[ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()])
return X
def getMean(self):
return [0.5, 2.5]
def getCovariance(self):
return [[1.0, 0.0], [0.0, 1.0]]
Instanciate our distribution
randomVector = ot.RandomVector(RVEC())
Get a sample
randomVector.getSample(5)
v0 | v1 | |
---|---|---|
0 | 0.2001577 | 2.751968 |
1 | 0.374857 | 2.529779 |
2 | 0.7119889 | 2.497759 |
3 | 0.9211765 | 2.555468 |
4 | 0.3753769 | 2.568851 |
Get mean
randomVector.getMean()
[0.5,2.5]
Compute the probability contained in an interval
randomVector.getCovariance()
[[ 1 0 ]
[ 0 1 ]]
Total running time of the script: ( 0 minutes 0.002 seconds)