Note
Click here to download the full example code
Sobol’ sensitivity indices from chaos¶
In this example we are going to compute global sensitivity indices from a functional chaos decomposition.
We study the Borehole function that models water flow through a borehole:
With parameters:
: radius of borehole (m)
: radius of influence (m)
: transmissivity of upper aquifer ()
: potentiometric head of upper aquifer (m)
: transmissivity of lower aquifer ()
: potentiometric head of lower aquifer (m)
: length of borehole (m)
: hydraulic conductivity of borehole ()
from __future__ import print_function
import openturns as ot
from operator import itemgetter
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
borehole model
dimension = 8
input_names = ['rw', 'r', 'Tu', 'Hu', 'Tl', 'Hl', 'L', 'Kw']
model = ot.SymbolicFunction(input_names,
['(2*pi_*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))'])
coll = [ot.Normal(0.1, 0.0161812),
ot.LogNormal(7.71, 1.0056),
ot.Uniform(63070.0, 115600.0),
ot.Uniform(990.0, 1110.0),
ot.Uniform(63.1, 116.0),
ot.Uniform(700.0, 820.0),
ot.Uniform(1120.0, 1680.0),
ot.Uniform(9855.0, 12045.0)]
distribution = ot.ComposedDistribution(coll)
distribution.setDescription(input_names)
Freeze r, Tu, Tl from model to go faster
selection = [1,2,4]
complement = ot.Indices(selection).complement(dimension)
distribution = distribution.getMarginal(complement)
model = ot.ParametricFunction(model, selection, distribution.getMarginal(selection).getMean())
input_names_copy = list(input_names)
input_names = itemgetter(*complement)(input_names)
dimension = len(complement)
design of experiment
size = 1000
X = distribution.getSample(size)
Y = model(X)
create a functional chaos model
algo = ot.FunctionalChaosAlgorithm(X, Y)
algo.run()
result = algo.getResult()
print(result.getResiduals())
print(result.getRelativeErrors())
Out:
[0.00224141]
[8.8431e-09]
Quick summary of sensitivity analysis
sensitivityAnalysis = ot.FunctionalChaosSobolIndices(result)
print(sensitivityAnalysis.summary())
Out:
input dimension: 5
output dimension: 1
basis size: 44
mean: [74.1358]
std-dev: [28.7844]
------------------------------------------------------------
Index | Multi-indice | Part of variance
------------------------------------------------------------
1 | [1,0,0,0,0] | 0.654212
3 | [0,0,1,0,0] | 0.0947941
2 | [0,1,0,0,0] | 0.0946975
4 | [0,0,0,1,0] | 0.0904842
5 | [0,0,0,0,1] | 0.0221225
------------------------------------------------------------
------------------------------------------------------------
Component | Sobol index | Sobol total index
------------------------------------------------------------
0 | 0.662726 | 0.693362
1 | 0.0946975 | 0.10585
2 | 0.0947941 | 0.106069
3 | 0.0914871 | 0.10387
4 | 0.0221225 | 0.0253679
------------------------------------------------------------
draw Sobol’ indices
first_order = [sensitivityAnalysis.getSobolIndex(i) for i in range(dimension)]
total_order = [sensitivityAnalysis.getSobolTotalIndex(i) for i in range(dimension)]
graph = ot.SobolIndicesAlgorithm.DrawSobolIndices(input_names, first_order, total_order)
view = viewer.View(graph)
We saw that total order indices are close to first order, so the higher order indices must be all quite close to 0
for i in range(dimension):
for j in range(i):
print(input_names[i] + ' & '+ input_names[j], ":", sensitivityAnalysis.getSobolIndex([i, j]))
plt.show()
Out:
Hu & rw : 0.00939596043391626
Hl & rw : 0.0094957984784045
Hl & Hu : 0.0
L & rw : 0.00918479200468764
L & Hu : 0.0012912602896845825
L & Hl : 0.0013069732237138588
Kw & rw : 0.002220185764977052
Kw & Hu : 0.00031043066749530707
Kw & Hl : 0.0003119420529851785
Kw & L : 0.0003096614949037279
Total running time of the script: ( 0 minutes 4.319 seconds)