Cobyla

class Cobyla(*args)

Constrained Optimization BY Linear Approximations solver.

Available constructors:

Cobyla(problem)

Cobyla(problem, rhoBeg)

Parameters
problemOptimizationProblem

Optimization problem to solve.

rhoBegfloat

A reasonable initial change to the variables.

See also

AbdoRackwitz, SQP, TNC, NLopt

Notes

It constructs successive linear approximations of the objective function and constraints via a simplex of d+1 points, and optimizes these approximations in a trust region at each step. This solver use no derivative information and supports all types of constraints.

Examples

>>> import openturns as ot
>>> model = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> problem = ot.NearestPointProblem(model, 5.0)
>>> algo = ot.Cobyla(problem)
>>> algo.setMaximumEvaluationNumber(10000)
>>> algo.setStartingPoint([1.0] * 4)
>>> algo.run()
>>> result = algo.getResult()

Methods

getClassName()

Accessor to the object’s name.

getId()

Accessor to the object’s id.

getIgnoreFailure()

Accessor to ignore failure flag.

getMaximumAbsoluteError()

Accessor to maximum allowed absolute error.

getMaximumConstraintError()

Accessor to maximum allowed constraint error.

getMaximumEvaluationNumber()

Accessor to maximum allowed number of evaluations.

getMaximumIterationNumber()

Accessor to maximum allowed number of iterations.

getMaximumRelativeError()

Accessor to maximum allowed relative error.

getMaximumResidualError()

Accessor to maximum allowed residual error.

getName()

Accessor to the object’s name.

getProblem()

Accessor to optimization problem.

getResult()

Accessor to optimization result.

getRhoBeg()

Accessor to rhoBeg parameter.

getShadowedId()

Accessor to the object’s shadowed id.

getStartingPoint()

Accessor to starting point.

getVerbose()

Accessor to the verbosity flag.

getVisibility()

Accessor to the object’s visibility state.

hasName()

Test if the object is named.

hasVisibleName()

Test if the object has a distinguishable name.

run()

Launch the optimization.

setIgnoreFailure(ignoreFailure)

Accessor to ignore failure flag.

setMaximumAbsoluteError(maximumAbsoluteError)

Accessor to maximum allowed absolute error.

setMaximumConstraintError(maximumConstraintError)

Accessor to maximum allowed constraint error.

setMaximumEvaluationNumber(…)

Accessor to maximum allowed number of evaluations.

setMaximumIterationNumber(maximumIterationNumber)

Accessor to maximum allowed number of iterations.

setMaximumRelativeError(maximumRelativeError)

Accessor to maximum allowed relative error.

setMaximumResidualError(maximumResidualError)

Accessor to maximum allowed residual error.

setName(name)

Accessor to the object’s name.

setProblem(problem)

Accessor to optimization problem.

setProgressCallback(*args)

Set up a progress callback.

setResult(result)

Accessor to optimization result.

setRhoBeg(rhoBeg)

Accessor to rhoBeg parameter.

setShadowedId(id)

Accessor to the object’s shadowed id.

setStartingPoint(startingPoint)

Accessor to starting point.

setStopCallback(*args)

Set up a stop callback.

setVerbose(verbose)

Accessor to the verbosity flag.

setVisibility(visible)

Accessor to the object’s visibility state.

computeLagrangeMultipliers

__init__(*args)

Initialize self. See help(type(self)) for accurate signature.

getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getIgnoreFailure()

Accessor to ignore failure flag.

Returns
ignore_failurebool

Whether to ignore failure return codes.

getMaximumAbsoluteError()

Accessor to maximum allowed absolute error.

Returns
maximumAbsoluteErrorfloat

Maximum allowed absolute error, where the absolute error is defined by \epsilon^a_n=\|\vect{x}_{n+1}-\vect{x}_n\|_{\infty} where \vect{x}_{n+1} and \vect{x}_n are two consecutive approximations of the optimum.

getMaximumConstraintError()

Accessor to maximum allowed constraint error.

Returns
maximumConstraintErrorfloat

Maximum allowed constraint error, where the constraint error is defined by \gamma_n=\|g(\vect{x}_n)\|_{\infty} where \vect{x}_n is the current approximation of the optimum and g is the function that gathers all the equality and inequality constraints (violated values only)

getMaximumEvaluationNumber()

Accessor to maximum allowed number of evaluations.

Returns
Nint

Maximum allowed number of evaluations.

getMaximumIterationNumber()

Accessor to maximum allowed number of iterations.

Returns
Nint

Maximum allowed number of iterations.

getMaximumRelativeError()

Accessor to maximum allowed relative error.

Returns
maximumRelativeErrorfloat

Maximum allowed relative error, where the relative error is defined by \epsilon^r_n=\epsilon^a_n/\|\vect{x}_{n+1}\|_{\infty} if \|\vect{x}_{n+1}\|_{\infty}\neq 0, else \epsilon^r_n=-1.

getMaximumResidualError()

Accessor to maximum allowed residual error.

Returns
maximumResidualErrorfloat

Maximum allowed residual error, where the residual error is defined by \epsilon^r_n=\frac{\|f(\vect{x}_{n+1})-f(\vect{x}_{n})\|}{\|f(\vect{x}_{n+1})\|} if \|f(\vect{x}_{n+1})\|\neq 0, else \epsilon^r_n=-1.

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getProblem()

Accessor to optimization problem.

Returns
problemOptimizationProblem

Optimization problem.

getResult()

Accessor to optimization result.

Returns
resultOptimizationResult

Result class.

getRhoBeg()

Accessor to rhoBeg parameter.

Returns
rhoBegfloat

A reasonable initial change to the variables.

getShadowedId()

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getStartingPoint()

Accessor to starting point.

Returns
startingPointPoint

Starting point.

getVerbose()

Accessor to the verbosity flag.

Returns
verbosebool

Verbosity flag state.

getVisibility()

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

run()

Launch the optimization.

setIgnoreFailure(ignoreFailure)

Accessor to ignore failure flag.

Parameters
ignore_failurebool

Whether to ignore failure return codes.

setMaximumAbsoluteError(maximumAbsoluteError)

Accessor to maximum allowed absolute error.

Parameters
maximumAbsoluteErrorfloat

Maximum allowed absolute error, where the absolute error is defined by \epsilon^a_n=\|\vect{x}_{n+1}-\vect{x}_n\|_{\infty} where \vect{x}_{n+1} and \vect{x}_n are two consecutive approximations of the optimum.

setMaximumConstraintError(maximumConstraintError)

Accessor to maximum allowed constraint error.

Parameters
maximumConstraintErrorfloat

Maximum allowed constraint error, where the constraint error is defined by \gamma_n=\|g(\vect{x}_n)\|_{\infty} where \vect{x}_n is the current approximation of the optimum and g is the function that gathers all the equality and inequality constraints (violated values only)

setMaximumEvaluationNumber(maximumEvaluationNumber)

Accessor to maximum allowed number of evaluations.

Parameters
Nint

Maximum allowed number of evaluations.

setMaximumIterationNumber(maximumIterationNumber)

Accessor to maximum allowed number of iterations.

Parameters
Nint

Maximum allowed number of iterations.

setMaximumRelativeError(maximumRelativeError)

Accessor to maximum allowed relative error.

Parameters
maximumRelativeErrorfloat

Maximum allowed relative error, where the relative error is defined by \epsilon^r_n=\epsilon^a_n/\|\vect{x}_{n+1}\|_{\infty} if \|\vect{x}_{n+1}\|_{\infty}\neq 0, else \epsilon^r_n=-1.

setMaximumResidualError(maximumResidualError)

Accessor to maximum allowed residual error.

Parameters
Maximum allowed residual error, where the residual error is defined by

\epsilon^r_n=\frac{\|f(\vect{x}_{n+1})-f(\vect{x}_{n})\|}{\|f(\vect{x}_{n+1})\|} if \|f(\vect{x}_{n+1})\|\neq 0, else \epsilon^r_n=-1.

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setProblem(problem)

Accessor to optimization problem.

Parameters
problemOptimizationProblem

Optimization problem.

setProgressCallback(*args)

Set up a progress callback.

Can be used to programmatically report the progress of an optimization.

Parameters
callbackcallable

Takes a float as argument as percentage of progress.

Examples

>>> import sys
>>> import openturns as ot
>>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2'])
>>> problem = ot.OptimizationProblem(rosenbrock)
>>> solver = ot.OptimizationAlgorithm(problem)
>>> solver.setStartingPoint([0, 0])
>>> solver.setMaximumResidualError(1.e-3)
>>> solver.setMaximumEvaluationNumber(10000)
>>> def report_progress(progress):
...     sys.stderr.write('-- progress=' + str(progress) + '%\n')
>>> solver.setProgressCallback(report_progress)
>>> solver.run()
setResult(result)

Accessor to optimization result.

Parameters
resultOptimizationResult

Result class.

setRhoBeg(rhoBeg)

Accessor to rhoBeg parameter.

Parameters
rhoBegfloat

A reasonable initial change to the variables.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setStartingPoint(startingPoint)

Accessor to starting point.

Parameters
startingPointPoint

Starting point.

setStopCallback(*args)

Set up a stop callback.

Can be used to programmatically stop an optimization.

Parameters
callbackcallable

Returns an int deciding whether to stop or continue.

Examples

>>> import openturns as ot
>>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2'])
>>> problem = ot.OptimizationProblem(rosenbrock)
>>> solver = ot.OptimizationAlgorithm(problem)
>>> solver.setStartingPoint([0, 0])
>>> solver.setMaximumResidualError(1.e-3)
>>> solver.setMaximumEvaluationNumber(10000)
>>> def ask_stop():
...     return True
>>> solver.setStopCallback(ask_stop)
>>> solver.run()
setVerbose(verbose)

Accessor to the verbosity flag.

Parameters
verbosebool

Verbosity flag state.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.