ExpectationSimulationAlgorithm¶
-
class
ExpectationSimulationAlgorithm
(*args)¶ Expectation computation using sampling.
Incremental Monte Carlo sampling algorithm to estimate the mean of a random vector .
- Parameters
- X
RandomVector
The random vector to study.
- X
See also
Notes
The algorithm can operate on a multivariate random vector .
There are 3 mathematical stopping criteria available:
through an operator on the coefficient of variation
through an operator on the standard deviation
on the maximum standard deviation per component
The criterion on the coefficient of variation is defined using either:
The maximum:
The norm-1:
The norm-2:
The type of operator on the coefficient of variation is set using
setCoefficientOfVariationCriterionType()
.The default type is set by the ExpectationSimulationAlgorithm-DefaultCoefficientOfVariationCriterionType
ResourceMap
key.The threshold can be set using
setMaximumCoefficientOfVariation()
.The criterion on the standard deviation is defined using either:
The maximum:
The norm-1:
The norm-2:
The type of operator on the coefficient of variation can be set using
setStandardDeviationCriterionType()
.The default type is set by the ExpectationSimulationAlgorithm-DefaultStandardDeviationCriterionType
ResourceMap
key.The threshold can be set using
setMaximumStandardDeviation()
.The criterion on the maximum deviation per component is defined by
The thresholds can be set using
setMaximumStandardDeviationPerComponent()
.By default this criterion is disabled.
Examples
>>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> # Create a composite random vector >>> model = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)']) >>> distribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4)) >>> vect = ot.RandomVector(distribution) >>> X = ot.CompositeRandomVector(model, vect) >>> algo = ot.ExpectationSimulationAlgorithm(X) >>> algo.setMaximumOuterSampling(1000) >>> algo.setBlockSize(1) >>> algo.setCoefficientOfVariationCriterionType('NONE') >>> algo.run() >>> result = algo.getResult() >>> expectation = result.getExpectationEstimate() >>> print(expectation) [-1.39543] >>> expectationDistribution = result.getExpectationDistribution()
Methods
drawExpectationConvergence
(*args)Draw the expectation convergence at a given level.
Accessor to the block size.
Accessor to the object’s name.
Accessor to the criterion operator.
Accessor to the convergence strategy.
getId
()Accessor to the object’s id.
Accessor to the maximum coefficient of variation.
Accessor to the maximum sample size.
Accessor to the maximum standard deviation.
Accessor to the maximum standard deviation.
getName
()Accessor to the object’s name.
Accessor to the random vector.
Accessor to the result.
Accessor to the object’s shadowed id.
Accessor to the criterion operator.
Accessor to verbosity.
Accessor to the object’s visibility state.
hasName
()Test if the object is named.
Test if the object has a distinguishable name.
run
()Launch simulation.
setBlockSize
(blockSize)Accessor to the block size.
Accessor to the criterion operator.
setConvergenceStrategy
(convergenceStrategy)Accessor to the convergence strategy.
Accessor to the maximum coefficient of variation.
setMaximumOuterSampling
(maximumOuterSampling)Accessor to the maximum sample size.
Accessor to the maximum standard deviation.
Accessor to the maximum standard deviation.
setName
(name)Accessor to the object’s name.
setProgressCallback
(*args)Set up a progress callback.
setShadowedId
(id)Accessor to the object’s shadowed id.
setStandardDeviationCriterionType
(criterionType)Accessor to the criterion operator.
setStopCallback
(*args)Set up a stop callback.
setVerbose
(verbose)Accessor to verbosity.
setVisibility
(visible)Accessor to the object’s visibility state.
-
__init__
(*args)¶ Initialize self. See help(type(self)) for accurate signature.
-
drawExpectationConvergence
(*args)¶ Draw the expectation convergence at a given level.
- Parameters
- marginalIndexint
Index of the random vector component to consider
- levelfloat, optional
The expectation convergence is drawn at this given confidence length level. By default level is 0.95.
- Returns
- grapha
Graph
expectation convergence graph
- grapha
-
getBlockSize
()¶ Accessor to the block size.
- Returns
- blockSizeint
Number of terms in the probability simulation estimator grouped together. It is set by default to 1.
-
getClassName
()¶ Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
-
getCoefficientOfVariationCriterionType
()¶ Accessor to the criterion operator.
- Returns
- resultstr
The criterion operator.
-
getConvergenceStrategy
()¶ Accessor to the convergence strategy.
- Returns
- storage_strategy
HistoryStrategy
Storage strategy used to store the values of the probability estimator and its variance during the simulation algorithm.
- storage_strategy
-
getId
()¶ Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
-
getMaximumCoefficientOfVariation
()¶ Accessor to the maximum coefficient of variation.
- Returns
- coefficientfloat
Maximum coefficient of variation of the simulated sample.
-
getMaximumOuterSampling
()¶ Accessor to the maximum sample size.
- Returns
- outerSamplingint
Maximum number of groups of terms in the probability simulation estimator.
-
getMaximumStandardDeviation
()¶ Accessor to the maximum standard deviation.
- Returns
- sigmafloat,
Maximum standard deviation of the estimator.
-
getMaximumStandardDeviationPerComponent
()¶ Accessor to the maximum standard deviation.
- Returns
- sigmaMaxsequence of float
The maximum standard deviation on each component.
-
getName
()¶ Accessor to the object’s name.
- Returns
- namestr
The name of the object.
-
getRandomVector
()¶ Accessor to the random vector.
- Returns
- X
RandomVector
Random vector we want to study.
- X
-
getResult
()¶ Accessor to the result.
- Returns
- result
ExpectationSimulationResult
The simulation result.
- result
-
getShadowedId
()¶ Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
-
getStandardDeviationCriterionType
()¶ Accessor to the criterion operator.
- Returns
- resultstr
The criterion operator.
-
getVerbose
()¶ Accessor to verbosity.
- Returns
- verbosity_enabledbool
If True, the computation is verbose. By default it is verbose.
-
getVisibility
()¶ Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
-
hasName
()¶ Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
-
hasVisibleName
()¶ Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
-
run
()¶ Launch simulation.
Notes
It launches the simulation on a sample of size at most outerSampling * blockSize, this sample being built by blocks of size blockSize. It allows to use efficiently the distribution of the computation as well as it allows to deal with a sample size by a combination of blockSize and outerSampling.
-
setBlockSize
(blockSize)¶ Accessor to the block size.
- Parameters
- blockSizeint,
Number of terms in the probability simulation estimator grouped together. It is set by default to 1.
Notes
For Monte Carlo, LHS and Importance Sampling methods, this allows to save space while allowing multithreading, when available we recommend to use the number of available CPUs; for the Directional Sampling, we recommend to set it to 1.
-
setCoefficientOfVariationCriterionType
(criterionType)¶ Accessor to the criterion operator.
- Parameters
- resultstr
The criterion operator, either NONE, MAX, NORM1 or NORM2.
-
setConvergenceStrategy
(convergenceStrategy)¶ Accessor to the convergence strategy.
- Parameters
- storage_strategy
HistoryStrategy
Storage strategy used to store the values of the probability estimator and its variance during the simulation algorithm.
- storage_strategy
-
setMaximumCoefficientOfVariation
(maximumCoefficientOfVariation)¶ Accessor to the maximum coefficient of variation.
- Parameters
- coefficientfloat
Maximum coefficient of variation of the simulated sample.
-
setMaximumOuterSampling
(maximumOuterSampling)¶ Accessor to the maximum sample size.
- Parameters
- outerSamplingint
Maximum number of groups of terms in the probability simulation estimator.
-
setMaximumStandardDeviation
(maximumStandardDeviation)¶ Accessor to the maximum standard deviation.
- Parameters
- sigmafloat,
Maximum standard deviation of the estimator.
-
setMaximumStandardDeviationPerComponent
(maximumStandardDeviation)¶ Accessor to the maximum standard deviation.
- Parameters
- sigmaMaxsequence of float
The maximum standard deviation on each component.
If empty, the stopping criterion is not applied.
-
setName
(name)¶ Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
-
setProgressCallback
(*args)¶ Set up a progress callback.
Can be used to programmatically report the progress of a simulation.
- Parameters
- callbackcallable
Takes a float as argument as percentage of progress.
Examples
>>> import sys >>> import openturns as ot >>> experiment = ot.MonteCarloExperiment() >>> X = ot.RandomVector(ot.Normal()) >>> Y = ot.CompositeRandomVector(ot.SymbolicFunction(['X'], ['1.1*X']), X) >>> event = ot.ThresholdEvent(Y, ot.Less(), -2.0) >>> algo = ot.ProbabilitySimulationAlgorithm(event, experiment) >>> algo.setMaximumOuterSampling(100) >>> algo.setMaximumCoefficientOfVariation(-1.0) >>> def report_progress(progress): ... sys.stderr.write('-- progress=' + str(progress) + '%\n') >>> algo.setProgressCallback(report_progress) >>> algo.run()
-
setShadowedId
(id)¶ Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
-
setStandardDeviationCriterionType
(criterionType)¶ Accessor to the criterion operator.
- Parameters
- resultstr
The criterion operator, either NONE, MAX, NORM1 or NORM2
-
setStopCallback
(*args)¶ Set up a stop callback.
Can be used to programmatically stop a simulation.
- Parameters
- callbackcallable
Returns an int deciding whether to stop or continue.
Examples
Stop a Monte Carlo simulation algorithm using a time limit
>>> import openturns as ot >>> experiment = ot.MonteCarloExperiment() >>> X = ot.RandomVector(ot.Normal()) >>> Y = ot.CompositeRandomVector(ot.SymbolicFunction(['X'], ['1.1*X']), X) >>> event = ot.ThresholdEvent(Y, ot.Less(), -2.0) >>> algo = ot.ProbabilitySimulationAlgorithm(event, experiment) >>> algo.setMaximumOuterSampling(10000000) >>> algo.setMaximumCoefficientOfVariation(-1.0) >>> timer = ot.TimerCallback(0.1) >>> algo.setStopCallback(timer) >>> algo.run()
-
setVerbose
(verbose)¶ Accessor to verbosity.
- Parameters
- verbosity_enabledbool
If True, make the computation verbose. By default it is verbose.
-
setVisibility
(visible)¶ Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.