FittingTest_BIC¶
- 
FittingTest_BIC(*args)¶
- Compute the Bayesian information criterion. - Refer to Bayesian Information Criterion (BIC). - Parameters
- sample2-d sequence of float
- Tested sample. 
- modelDistributionorDistributionFactory
- Tested distribution. 
- n_parametersint, , optional 
- The number of parameters in the distribution that have been estimated from the sample. This parameter must not be provided if a - DistributionFactorywas provided as the second argument (it will internally be set to the number of parameters estimated by the- DistributionFactory). It can be specified if a- Distributionwas provided as the second argument, but if it is not, it will be set equal to 0.
 
- Returns
- estimatedDistDistribution
- Estimated distribution (case factory as argument) 
- BICfloat
- The Bayesian information criterion. 
 
- estimatedDist
 - Notes - This is used for model selection. In case we set a factory argument, the method returns both the estimated distribution and BIC value. Otherwise it returns only the BIC value. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> ot.FittingTest.BIC(sample, distribution) 2.793869... >>> ot.FittingTest.BIC(sample, distribution, 2) 3.020615... >>> fitted_dist, bic = ot.FittingTest.BIC(sample, ot.NormalFactory()) >>> bic 3.010802... 
 OpenTURNS
      OpenTURNS