GaussLegendre¶
(Source code, png, hires.png, pdf)
 
- 
class GaussLegendre(*args)¶
- Tensorized integration algorithm of Gauss-Legendre. - Available constructors:
- GaussLegendre(dimension=1) - GaussLegendre(discretization) 
 - Parameters
- dimensionint, 
- The dimension of the functions to integrate. The default discretization is GaussLegendre-DefaultMarginalIntegrationPointsNumber in each dimension, see - ResourceMap.
- discretizationsequence of int
- The number of nodes in each dimension. The sequence must be non-empty and must contain only positive values. 
 
- dimensionint, 
 - Notes - The Gauss-Legendre algorithm enables to approximate the definite integral: - with - , - using a fixed tensorized Gauss-Legendre approximation: - where - is the - -points Gauss-Legendre 1D integration rule and - the associated weight. - Examples - Create a Gauss-Legendre algorithm: - >>> import openturns as ot >>> algo = ot.GaussLegendre(2) >>> algo = ot.GaussLegendre([2, 4, 5]) - Methods - Accessor to the object’s name. - Accessor to the discretization of the tensorized rule. - getId()- Accessor to the object’s id. - getName()- Accessor to the object’s name. - getNodes()- Accessor to the integration nodes. - Accessor to the object’s shadowed id. - Accessor to the object’s visibility state. - Accessor to the integration weights. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - integrate(*args)- Evaluation of the integral of - on an interval. - integrateWithNodes(function, interval)- Evaluation of the integral of - on an interval. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setVisibility(visible)- Accessor to the object’s visibility state. - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDiscretization()¶
- Accessor to the discretization of the tensorized rule. - Returns
- discretizationIndices
- The number of integration point in each dimension. 
 
- discretization
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getNodes()¶
- Accessor to the integration nodes. - Returns
- nodesSample
- The tensorized Gauss-Legendre integration nodes on - where - is the dimension of the integration algorithm. 
 
- nodes
 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
getWeights()¶
- Accessor to the integration weights. - Returns
- weightsPoint
- The tensorized Gauss-Legendre integration weights on - where - is the dimension of the integration algorithm. 
 
- weights
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
integrate(*args)¶
- Evaluation of the integral of - on an interval. - Available usages:
- integrate(f, interval) 
 - Parameters
- Returns
- valuePoint
- Approximation of the integral. 
 
- value
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x'], ['sin(x)']) >>> a = -2.5 >>> b = 4.5 >>> algoGL = ot.GaussLegendre([10]) >>> value = algoGL.integrate(f, ot.Interval(a, b))[0] >>> print(value) -0.590... 
 - 
integrateWithNodes(function, interval)¶
- Evaluation of the integral of - on an interval. - Parameters
- Returns
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x'], ['sin(x)']) >>> a = -2.5 >>> b = 4.5 >>> algoGL = ot.GaussLegendre([10]) >>> value, nodes = algoGL.integrateWithNodes(f, ot.Interval(a, b)) >>> print(value[0]) -0.590... >>> print(nodes) 0 : [ -2.40867 ] 1 : [ -2.02772 ] 2 : [ -1.37793 ] 3 : [ -0.516884 ] 4 : [ 0.47894 ] 5 : [ 1.52106 ] 6 : [ 2.51688 ] 7 : [ 3.37793 ] 8 : [ 4.02772 ] 9 : [ 4.40867 ] 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS