ImportanceSamplingExperiment¶
(Source code, png, hires.png, pdf)
 
- 
class ImportanceSamplingExperiment(*args)¶
- Importance Sampling experiment. - Available constructors:
- ImportanceSamplingExperiment(importanceDistribution) - ImportanceSamplingExperiment(importanceDistribution, size) - ImportanceSamplingExperiment(initialDistribution, importanceDistribution, size) 
 - Parameters
- initialDistributionDistribution
- Distribution - which is the initial distribution used to generate the set of input data. 
- sizepositive int
- Number of points that will be generated in the experiment. 
- importanceDistributionDistribution
- Distribution - according to which the points of the experiments will be generated with the Importance Sampling technique. 
 
- initialDistribution
 - See also - Notes - ImportanceSamplingExperiment is a random weighted design of experiments to get a sample - independently according to the distribution - . The sample is generated from the importance distribution - and each realization is weighted by - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.ComposedDistribution([ot.Uniform(0, 1)] * 2) >>> importanceDistribution = ot.ComposedDistribution([ot.Uniform(0, 1)] * 2) >>> experiment = ot.ImportanceSamplingExperiment(distribution, importanceDistribution, 5) >>> print(experiment.generate()) [ X0 X1 ] 0 : [ 0.629877 0.882805 ] 1 : [ 0.135276 0.0325028 ] 2 : [ 0.347057 0.969423 ] 3 : [ 0.92068 0.50304 ] 4 : [ 0.0632061 0.292757 ] - Methods - generate()- Generate points according to the type of the experiment. - Generate points and their associated weight according to the type of the experiment. - Accessor to the object’s name. - Accessor to the distribution. - getId()- Accessor to the object’s id. - getName()- Accessor to the object’s name. - Accessor to the object’s shadowed id. - getSize()- Accessor to the size of the generated sample. - Accessor to the object’s visibility state. - hasName()- Test if the object is named. - Ask whether the experiment has uniform weights. - Test if the object has a distinguishable name. - setDistribution(distribution)- Accessor to the distribution. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setSize(size)- Accessor to the size of the generated sample. - setVisibility(visible)- Accessor to the object’s visibility state. - getImportanceDistribution - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
generate()¶
- Generate points according to the type of the experiment. - Returns
- sampleSample
- Points - which constitute the design of experiments with - . The sampling method is defined by the nature of the weighted experiment. 
 
- sample
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample = myExperiment.generate() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] 
 - 
generateWithWeights()¶
- Generate points and their associated weight according to the type of the experiment. - Returns
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample, weights = myExperiment.generateWithWeights() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] >>> print(weights) [0.2,0.2,0.2,0.2,0.2] 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDistribution()¶
- Accessor to the distribution. - Returns
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getSize()¶
- Accessor to the size of the generated sample. - Returns
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasUniformWeights()¶
- Ask whether the experiment has uniform weights. - Returns
- hasUniformWeightsbool
- Whether the experiment has uniform weights. 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
setDistribution(distribution)¶
- Accessor to the distribution. - Parameters
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setSize(size)¶
- Accessor to the size of the generated sample. - Parameters
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS