JacobiFactory¶
(Source code, png, hires.png, pdf)
 
- 
class JacobiFactory(*args)¶
- Jacobi specific orthonormal univariate polynomial family. - For the - Betadistribution.- Available constructors:
- Jacobi(arg1=1.0, arg2=1.0, parameters_set=ot.JacobiFactory.ANALYSIS) 
 - Parameters
- arg1float
- If parameters_set == ot.JacobiFactory.PROBABILITY: default shape parameter - of the - Betadistribution.- If parameters_set == ot.JacobiFactory.ANALYSIS: alternative shape parameter - of the - Betadistribution.
- arg2float
- If parameters_set == ot.JacobiFactory.PROBABILITY: default shape parameter - of the - Betadistribution.- If parameters_set == ot.JacobiFactory.ANALYSIS: alternative shape parameter - of the - Betadistribution.
- parameters_setint, optional
- Integer telling which parameters set is used for defining the distribution (amongst ot.JacobiFactory.ANALYSIS, ot.JacobiFactory.PROBABILITY). 
 
 - Notes - Any sequence of orthogonal polynomials has a recurrence formula relating any three consecutive polynomials as follows: - The recurrence coefficients for the Jacobi polynomials come analytically and read: - where - and - are the alternative shape parameters of the - Betadistribution, and:- Examples - >>> import openturns as ot >>> polynomial_factory = ot.JacobiFactory() >>> for i in range(3): ... print(polynomial_factory.build(i)) 1 2.23607 * X -0.935414 + 4.67707 * X^2 - Methods - build(degree)- Build the - -th order orthogonal univariate polynomial. - buildCoefficients(degree)- Build the - -th order orthogonal univariate polynomial coefficients. - Build the recurrence coefficients. - getAlpha()- Accessor to the alternative shape parameter - . - getBeta()- Accessor to the alternative shape parameter - . - Accessor to the object’s name. - getId()- Accessor to the object’s id. - Accessor to the associated probability measure. - getName()- Accessor to the object’s name. - Build the - -th order quadrature scheme. - Accessor to the recurrence coefficients of the - -th order. - getRoots(n)- Accessor to the recurrence coefficients of the - -th order. - Accessor to the object’s shadowed id. - Accessor to the object’s visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setVisibility(visible)- Accessor to the object’s visibility state. - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
build(degree)¶
- Build the - -th order orthogonal univariate polynomial. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
- polynomialOrthogonalUniVariatePolynomial
- Requested orthogonal univariate polynomial. 
 
- polynomial
 - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.build(2)) -0.707107 + 0.707107 * X^2 
 - 
buildCoefficients(degree)¶
- Build the - -th order orthogonal univariate polynomial coefficients. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
- coefficientsPoint
- Coefficients of the requested orthogonal univariate polynomial. 
 
- coefficients
 - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.buildCoefficients(2)) [-0.707107,0,0.707107] 
 - 
buildRecurrenceCoefficientsCollection(degree)¶
- Build the recurrence coefficients. - Build the recurrence coefficients of the orthogonal univariate polynomial family up to the - -th order. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
- recurrence_coefficientslist of Point
- All the tecurrence coefficients up to the requested order. 
 
- recurrence_coefficientslist of 
 - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.buildRecurrenceCoefficientsCollection(2)) [[1,0,0],[0.707107,0,-0.707107]] 
 - 
getAlpha()¶
- Accessor to the alternative shape parameter - . - Of the - Betadistribution.- Returns
- alphafloat
- Alternative shape parameter - of the - Betadistribution.
 
 
 - 
getBeta()¶
- Accessor to the alternative shape parameter - . - Of the - Betadistribution.- Returns
- betafloat
- Alternative shape parameter - of the - Betadistribution.
 
 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getMeasure()¶
- Accessor to the associated probability measure. - Returns
- measureDistribution
- The associated probability measure (according to which the polynomials are orthogonal). 
 
- measure
 - Notes - Two polynomials P and Q are orthogonal with respect to the probability measure - if and only if their dot product: - where - and - . - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.getMeasure()) Normal(mu = 0, sigma = 1) 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getNodesAndWeights(n)¶
- Build the - -th order quadrature scheme. - Associated with the orthogonal univariate polynomials family. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
 - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> nodes, weights = polynomial_factory.getNodesAndWeights(3) >>> print(nodes) [-1.73205,...,1.73205] >>> print(weights) [0.166667,0.666667,0.166667] 
 - 
getRecurrenceCoefficients(n)¶
- Accessor to the recurrence coefficients of the - -th order. - Of the orthogonal univariate polynomial. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
- recurrence_coefficientsPoint
- The recurrence coefficients of the - -th order orthogonal univariate polynomial. 
 
- recurrence_coefficients
 - Notes - Any sequence of orthogonal polynomials has a recurrence formula relating any three consecutive polynomials as follows: - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.getRecurrenceCoefficients(3)) [0.5,0,-0.866025] 
 - 
getRoots(n)¶
- Accessor to the recurrence coefficients of the - -th order. - Of the orthogonal univariate polynomial. - Parameters
- kint, 
- Polynomial order. 
 
- kint, 
- Returns
- rootsPoint
- The roots of the - -th order orthogonal univariate polynomial. 
 
- roots
 - Examples - >>> import openturns as ot >>> polynomial_factory = ot.HermiteFactory() >>> print(polynomial_factory.getRoots(3)) [-1.73205,...,1.73205] 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS