MonteCarloLHS¶
- 
class MonteCarloLHS(*args)¶
- Monte Carlo LHS optimization. - Performs the optimization of an LHS using Monte Carlo simulations. - Available constructors:
- MonteCarloLHS(lhsDesign, N) - MonteCarloLHS(lhsDesign, N, spaceFilling) 
 - Parameters
- lhsDesignLHSExperiment
- Factory that generate designs 
- Nint
- Number of simulations 
- spaceFillingSpaceFilling
- Criterion to be optimized Default spaceFilling is MinDist 
 
- lhsDesign
 - Notes - MonteCarloLHS generate N designs using lhsDesign and returns the optimal one with respect to spaceFilling - Examples - >>> import openturns as ot >>> dimension = 3 >>> size = 100 >>> # Build standard randomized LHS algorithm >>> distribution = ot.ComposedDistribution([ot.Uniform(0.0, 1.0)]*dimension) >>> lhs = ot.LHSExperiment(distribution, size) >>> lhs.setAlwaysShuffle(True) # randomized >>> # Defining space fillings >>> spaceFilling = ot.SpaceFillingC2() >>> # RandomBruteForce MonteCarlo with N designs (LHS with C2 optimization) >>> N = 10000 >>> optimalLHSAlgorithm = ot.MonteCarloLHS(lhs, N, spaceFilling) - Methods - generate()- Generate points according to the type of the experiment. - Generate points and their associated weight according to the type of the experiment. - Accessor to the object’s name. - Accessor to the distribution. - getId()- Accessor to the object’s id. - getLHS()- Return the LHS design. - getName()- Accessor to the object’s name. - Result accessor. - Accessor to the object’s shadowed id. - getSize()- Accessor to the size of the generated sample. - Return the space-filling criterion to be optimized. - Accessor to the object’s visibility state. - hasName()- Test if the object is named. - Ask whether the experiment has uniform weights. - Test if the object has a distinguishable name. - setDistribution(distribution)- Accessor to the distribution. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setSize(size)- Accessor to the size of the generated sample. - setVisibility(visible)- Accessor to the object’s visibility state. - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
generate()¶
- Generate points according to the type of the experiment. - Returns
- sampleSample
- Points - which constitute the design of experiments with - . The sampling method is defined by the nature of the weighted experiment. 
 
- sample
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample = myExperiment.generate() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] 
 - 
generateWithWeights()¶
- Generate points and their associated weight according to the type of the experiment. - Returns
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) >>> sample, weights = myExperiment.generateWithWeights() >>> print(sample) [ X0 X1 ] 0 : [ 0.608202 -1.26617 ] 1 : [ -0.438266 1.20548 ] 2 : [ -2.18139 0.350042 ] 3 : [ -0.355007 1.43725 ] 4 : [ 0.810668 0.793156 ] >>> print(weights) [0.2,0.2,0.2,0.2,0.2] 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDistribution()¶
- Accessor to the distribution. - Returns
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getLHS()¶
- Return the LHS design. - Returns
- valueLHSExperiment
- Result the factory that builds initial design to be optimized 
 
- value
 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getResult()¶
- Result accessor. - Returns
- valueLHSResult
- Result of generation that contains the optimal design, some criteria and history 
 
- value
 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getSize()¶
- Accessor to the size of the generated sample. - Returns
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
getSpaceFilling()¶
- Return the space-filling criterion to be optimized. - Returns
- valueSpaceFilling
- Criterion function to be optimized 
 
- value
 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasUniformWeights()¶
- Ask whether the experiment has uniform weights. - Returns
- hasUniformWeightsbool
- Whether the experiment has uniform weights. 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
setDistribution(distribution)¶
- Accessor to the distribution. - Parameters
- distributionDistribution
- Distribution used to generate the set of input data. 
 
- distribution
 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setSize(size)¶
- Accessor to the size of the generated sample. - Parameters
- sizepositive int
- Number - of points constituting the design of experiments. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS