TensorizedUniVariateFunctionFactory¶
- 
class TensorizedUniVariateFunctionFactory(*args)¶
- Base class for tensorized multivariate functions. - Available constructors:
- TensorizedUniVariateFunctionFactory(functions) - TensorizedUniVariateFunctionFactory(functions, enumerateFunction) 
 - Parameters
- functionslist of UniVariateFunctionFamily
- List of univariate function factories. 
- enumerateFunctionEnumerateFunction
- Associates to an integer its multi-index image in the - dimension, which is the dimension of the basis. This multi-index represents the collection of degrees of the univariate polynomials. 
 
- functionslist of 
 - Notes - TensorizedUniVariateFunctionFactory allows to create multidimensional functions as the tensor product of univariate functions created by their respective factories (i.e. - UniVariateFunctionFamily):- where - is the univariate basis of degree - associated to the component - and - is the ith component of the multi-index - Let’s note that the exact hessian and gradient have been implemented for the product of polynomials. - Examples - >>> import openturns as ot >>> funcColl = [ot.HaarWaveletFactory(), ot.FourierSeriesFactory(), ot.MonomialFunctionFactory()] >>> dim = len(funcColl) >>> enumerateFunction = ot.LinearEnumerateFunction(dim) >>> productBasis = ot.TensorizedUniVariateFunctionFactory(funcColl, enumerateFunction) - Methods - build(index)- Build the element of the given index. - Accessor to the object’s name. - Get the dimension of the Basis. - getId()- Accessor to the object’s id. - getName()- Accessor to the object’s name. - Accessor to the object’s shadowed id. - getSize()- Get the size of the Basis. - getSubBasis(indices)- Get a sub-basis of the Basis. - Accessor to the object’s visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - isFinite()- Tell whether the basis is finite. - Tell whether the basis is orthogonal. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setVisibility(visible)- Accessor to the object’s visibility state. - add - getEnumerateFunction - getFunctionFamilyCollection - setEnumerateFunction - setFunctionFamilyCollection - 
__init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
build(index)¶
- Build the element of the given index. - Parameters
- indexint, 
- Index of an element of the Basis. 
 
- indexint, 
- Returns
- functionFunction
- The function at the index index of the Basis. 
 
- function
 - Examples - >>> import openturns as ot >>> dimension = 3 >>> input = ['x0', 'x1', 'x2'] >>> functions = [] >>> for i in range(dimension): ... functions.append(ot.SymbolicFunction(input, [input[i]])) >>> basis = ot.Basis(functions) >>> print(basis.build(0).getEvaluation()) [x0,x1,x2]->[x0] 
 - 
getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDimension()¶
- Get the dimension of the Basis. - Returns
- dimensionint
- Dimension of the Basis. 
 
 
 - 
getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getSize()¶
- Get the size of the Basis. - Returns
- sizeint
- Size of the Basis. 
 
 
 - 
getSubBasis(indices)¶
- Get a sub-basis of the Basis. - Parameters
- indiceslist of int
- Indices of the terms of the Basis put in the sub-basis. 
 
- Returns
- subBasislist of Function
- Functions defining a sub-basis. 
 
- subBasislist of 
 - Examples - >>> import openturns as ot >>> dimension = 3 >>> input = ['x0', 'x1', 'x2'] >>> functions = [] >>> for i in range(dimension): ... functions.append(ot.SymbolicFunction(input, [input[i]])) >>> basis = ot.Basis(functions) >>> subbasis = basis.getSubBasis([1]) >>> print(subbasis[0].getEvaluation()) [x0,x1,x2]->[x1] 
 - 
getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
isFinite()¶
- Tell whether the basis is finite. - Returns
- isFinitebool
- True if the basis is finite. 
 
 
 - 
isOrthogonal()¶
- Tell whether the basis is orthogonal. - Returns
- isOrthogonalbool
- True if the basis is orthogonal. 
 
 
 - 
setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS