.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_reliability_sensitivity/reliability/plot_axial_stressed_beam.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_reliability_plot_axial_stressed_beam.py: Axial stressed beam : comparing different methods to estimate a probability =========================================================================== .. GENERATED FROM PYTHON SOURCE LINES 6-13 In this example, we compare four methods to estimate the probability in the :ref:`axial stressed beam ` example : * Monte-Carlo simulation, * FORM, * directional sampling, * importance sampling with FORM design point: FORM-IS. .. GENERATED FROM PYTHON SOURCE LINES 15-17 Define the model ---------------- .. GENERATED FROM PYTHON SOURCE LINES 19-26 .. code-block:: default from __future__ import print_function import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 27-28 We load the model from the usecases module : .. GENERATED FROM PYTHON SOURCE LINES 28-31 .. code-block:: default from openturns.usecases import stressed_beam as stressed_beam sm = stressed_beam.AxialStressedBeam() .. GENERATED FROM PYTHON SOURCE LINES 32-33 The limit state function is defined in the `model` field of the data class : .. GENERATED FROM PYTHON SOURCE LINES 33-35 .. code-block:: default limitStateFunction = sm.model .. GENERATED FROM PYTHON SOURCE LINES 36-38 The probabilistic model of the axial stressed beam is defined in the data class. We get the first marginal and draw it : .. GENERATED FROM PYTHON SOURCE LINES 38-42 .. code-block:: default R_dist = sm.distribution_R graph = R_dist.drawPDF() view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_001.png :alt: plot axial stressed beam :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 43-44 We get the second marginal and draw it : .. GENERATED FROM PYTHON SOURCE LINES 46-50 .. code-block:: default F_dist = sm.distribution_F graph = F_dist.drawPDF() view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_002.png :alt: plot axial stressed beam :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 51-52 These independent marginals define the joint distribution of the input parameters : .. GENERATED FROM PYTHON SOURCE LINES 52-55 .. code-block:: default myDistribution = sm.distribution .. GENERATED FROM PYTHON SOURCE LINES 56-57 We create a `RandomVector` from the `Distribution`, then a composite random vector. Finally, we create a `ThresholdEvent` from this `RandomVector`. .. GENERATED FROM PYTHON SOURCE LINES 59-63 .. code-block:: default inputRandomVector = ot.RandomVector(myDistribution) outputRandomVector = ot.CompositeRandomVector(limitStateFunction, inputRandomVector) myEvent = ot.ThresholdEvent(outputRandomVector, ot.Less(), 0.0) .. GENERATED FROM PYTHON SOURCE LINES 64-66 Using Monte Carlo simulations ----------------------------- .. GENERATED FROM PYTHON SOURCE LINES 68-77 .. code-block:: default cv = 0.05 NbSim = 100000 experiment = ot.MonteCarloExperiment() algoMC = ot.ProbabilitySimulationAlgorithm(myEvent, experiment) algoMC.setMaximumOuterSampling(NbSim) algoMC.setBlockSize(1) algoMC.setMaximumCoefficientOfVariation(cv) .. GENERATED FROM PYTHON SOURCE LINES 78-79 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 79-81 .. code-block:: default initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 82-83 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 85-87 .. code-block:: default algoMC.run() .. GENERATED FROM PYTHON SOURCE LINES 88-95 .. code-block:: default result = algoMC.getResult() probabilityMonteCarlo = result.getProbabilityEstimate() numberOfFunctionEvaluationsMonteCarlo = limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall print('Number of calls to the limit state =', numberOfFunctionEvaluationsMonteCarlo) print('Pf = ', probabilityMonteCarlo) print('CV =', result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Number of calls to the limit state = 13289 Pf = 0.029272330498908847 CV = 0.049954418027493265 .. GENERATED FROM PYTHON SOURCE LINES 96-100 .. code-block:: default graph = algoMC.drawProbabilityConvergence() graph.setLogScale(ot.GraphImplementation.LOGX) view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_003.png :alt: ProbabilitySimulationAlgorithm convergence graph at level 0.95 :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 101-103 Using FORM analysis ------------------- .. GENERATED FROM PYTHON SOURCE LINES 105-106 We create a NearestPoint algorithm .. GENERATED FROM PYTHON SOURCE LINES 106-115 .. code-block:: default myCobyla = ot.Cobyla() # Resolution options: eps = 1e-3 myCobyla.setMaximumEvaluationNumber(100) myCobyla.setMaximumAbsoluteError(eps) myCobyla.setMaximumRelativeError(eps) myCobyla.setMaximumResidualError(eps) myCobyla.setMaximumConstraintError(eps) .. GENERATED FROM PYTHON SOURCE LINES 116-117 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 117-119 .. code-block:: default initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 120-121 We create a FORM algorithm. The first parameter is a NearestPointAlgorithm. The second parameter is an event. The third parameter is a starting point for the design point research. .. GENERATED FROM PYTHON SOURCE LINES 123-125 .. code-block:: default algoFORM = ot.FORM(myCobyla, myEvent, myDistribution.getMean()) .. GENERATED FROM PYTHON SOURCE LINES 126-127 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 129-131 .. code-block:: default algoFORM.run() .. GENERATED FROM PYTHON SOURCE LINES 132-138 .. code-block:: default resultFORM = algoFORM.getResult() numberOfFunctionEvaluationsFORM = limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall probabilityFORM = resultFORM.getEventProbability() print('Number of calls to the limit state =', numberOfFunctionEvaluationsFORM) print('Pf =', probabilityFORM) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Number of calls to the limit state = 98 Pf = 0.0299827855823147 .. GENERATED FROM PYTHON SOURCE LINES 139-142 .. code-block:: default graph = resultFORM.drawImportanceFactors() view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_004.png :alt: Importance Factors from Design Point - Unnamed :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 143-145 Using Directional sampling -------------------------- .. GENERATED FROM PYTHON SOURCE LINES 147-148 Resolution options: .. GENERATED FROM PYTHON SOURCE LINES 148-156 .. code-block:: default cv = 0.05 NbSim = 10000 algoDS = ot.DirectionalSampling(myEvent) algoDS.setMaximumOuterSampling(NbSim) algoDS.setBlockSize(1) algoDS.setMaximumCoefficientOfVariation(cv) .. GENERATED FROM PYTHON SOURCE LINES 157-158 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 158-160 .. code-block:: default initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 161-162 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 164-166 .. code-block:: default algoDS.run() .. GENERATED FROM PYTHON SOURCE LINES 167-174 .. code-block:: default result = algoDS.getResult() probabilityDirectionalSampling = result.getProbabilityEstimate() numberOfFunctionEvaluationsDirectionalSampling = limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall print('Number of calls to the limit state =', numberOfFunctionEvaluationsDirectionalSampling) print('Pf = ', probabilityDirectionalSampling) print('CV =', result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Number of calls to the limit state = 10139 Pf = 0.0276771208465632 CV = 0.04988350600378961 .. GENERATED FROM PYTHON SOURCE LINES 175-179 .. code-block:: default graph = algoDS.drawProbabilityConvergence() graph.setLogScale(ot.GraphImplementation.LOGX) view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_005.png :alt: DirectionalSampling convergence graph at level 0.95 :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 180-182 Using importance sampling with FORM design point: FORM-IS --------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 184-185 The `getStandardSpaceDesignPoint` method returns the design point in the U-space. .. GENERATED FROM PYTHON SOURCE LINES 187-190 .. code-block:: default standardSpaceDesignPoint = resultFORM.getStandardSpaceDesignPoint() standardSpaceDesignPoint .. raw:: html

[-1.59355,0.999463]



.. GENERATED FROM PYTHON SOURCE LINES 191-192 The key point is to define the importance distribution in the U-space. To define it, we use a multivariate standard Gaussian and configure it so that the center is equal to the design point in the U-space. .. GENERATED FROM PYTHON SOURCE LINES 194-197 .. code-block:: default dimension = myDistribution.getDimension() dimension .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 2 .. GENERATED FROM PYTHON SOURCE LINES 198-202 .. code-block:: default myImportance = ot.Normal(dimension) myImportance.setMean(standardSpaceDesignPoint) myImportance .. raw:: html

Normal(mu = [-1.59355,0.999463], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]])



.. GENERATED FROM PYTHON SOURCE LINES 203-204 Create the design of experiment corresponding to importance sampling. This generates a `WeightedExperiment` with weights corresponding to the importance distribution. .. GENERATED FROM PYTHON SOURCE LINES 206-208 .. code-block:: default experiment = ot.ImportanceSamplingExperiment(myImportance) .. GENERATED FROM PYTHON SOURCE LINES 209-210 Create the standard event corresponding to the event. This transforms the original problem into the U-space, with Gaussian independent marginals. .. GENERATED FROM PYTHON SOURCE LINES 212-214 .. code-block:: default standardEvent = ot.StandardEvent(myEvent) .. GENERATED FROM PYTHON SOURCE LINES 215-216 We then create the simulation algorithm. .. GENERATED FROM PYTHON SOURCE LINES 218-222 .. code-block:: default algo = ot.ProbabilitySimulationAlgorithm(standardEvent, experiment) algo.setMaximumCoefficientOfVariation(cv) algo.setMaximumOuterSampling(40000) .. GENERATED FROM PYTHON SOURCE LINES 223-224 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 224-226 .. code-block:: default initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 227-229 .. code-block:: default algo.run() .. GENERATED FROM PYTHON SOURCE LINES 230-231 retrieve results .. GENERATED FROM PYTHON SOURCE LINES 231-238 .. code-block:: default result = algo.getResult() probabilityFORMIS = result.getProbabilityEstimate() numberOfFunctionEvaluationsFORMIS = limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall print('Number of calls to the limit state =', numberOfFunctionEvaluationsFORMIS) print('Pf = ', probabilityFORMIS) print('CV =', result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Number of calls to the limit state = 883 Pf = 0.02985232966804074 CV = 0.04991286447957941 .. GENERATED FROM PYTHON SOURCE LINES 239-241 Conclusion ---------- .. GENERATED FROM PYTHON SOURCE LINES 243-244 We now compare the different methods in terms of accuracy and speed. .. GENERATED FROM PYTHON SOURCE LINES 246-249 .. code-block:: default import numpy as np .. GENERATED FROM PYTHON SOURCE LINES 250-251 The following function computes the number of correct base-10 digits in the computed result compared to the exact result. .. GENERATED FROM PYTHON SOURCE LINES 253-258 .. code-block:: default def computeLogRelativeError(exact, computed): logRelativeError = -np.log10(abs(exact - computed) / abs(exact)) return logRelativeError .. GENERATED FROM PYTHON SOURCE LINES 259-260 The following function prints the results. .. GENERATED FROM PYTHON SOURCE LINES 262-275 .. code-block:: default def printMethodSummary(name, computedProbability, numberOfFunctionEvaluations): print("---") print(name,":") print('Number of calls to the limit state =', numberOfFunctionEvaluations) print('Pf = ', computedProbability) exactProbability = 0.02919819462483051 logRelativeError = computeLogRelativeError(exactProbability, computedProbability) print("Number of correct digits=%.3f" % (logRelativeError)) performance = logRelativeError/numberOfFunctionEvaluations print("Performance=%.2e (correct digits/evaluation)" % (performance)) return .. GENERATED FROM PYTHON SOURCE LINES 276-281 .. code-block:: default printMethodSummary("Monte-Carlo", probabilityMonteCarlo, numberOfFunctionEvaluationsMonteCarlo) printMethodSummary("FORM", probabilityFORM, numberOfFunctionEvaluationsFORM) printMethodSummary("DirectionalSampling", probabilityDirectionalSampling, numberOfFunctionEvaluationsDirectionalSampling) printMethodSummary("FORM-IS", probabilityFORMIS, numberOfFunctionEvaluationsFORMIS) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none --- Monte-Carlo : Number of calls to the limit state = 13289 Pf = 0.029272330498908847 Number of correct digits=2.595 Performance=1.95e-04 (correct digits/evaluation) --- FORM : Number of calls to the limit state = 98 Pf = 0.0299827855823147 Number of correct digits=1.571 Performance=1.60e-02 (correct digits/evaluation) --- DirectionalSampling : Number of calls to the limit state = 10139 Pf = 0.0276771208465632 Number of correct digits=1.283 Performance=1.27e-04 (correct digits/evaluation) --- FORM-IS : Number of calls to the limit state = 883 Pf = 0.02985232966804074 Number of correct digits=1.650 Performance=1.87e-03 (correct digits/evaluation) .. GENERATED FROM PYTHON SOURCE LINES 282-288 We see that all three methods produce the correct probability, but not with the same accuracy. In this case, we have found the correct order of magnitude of the probability, i.e. between one and two correct digits. There is, however, a significant difference in computational performance (measured here by the number of function evaluations). * The fastest method is the FORM method, which produces more than 1 correct digit with less than 98 function evaluations with a performance equal to :math:`1.60 \times 10^{-2}` (correct digits/evaluation). A practical limitation is that the FORM method does not produce a confidence interval: there is no guarantee that the computed probability is correct. * The slowest method is Monte-Carlo simulation, which produces more than 1 correct digit with 12806 function evaluations. This is associated with a very slow performance equal to :math:`1.11 \times 10^{-4}` (correct digits/evaluation). The interesting point with the Monte-Carlo simulation is that the method produces a confidence interval. * The DirectionalSampling method is somewhat in-between the two previous methods. * The FORM-IS method produces 2 correct digits and has a small number of function evaluations. It has an intermediate performance equal to :math:`2.37\times 10^{-3}` (correct digits/evaluation). It combines the best of the both worlds: it has the small number of function evaluation of FORM computation and the confidence interval of Monte-Carlo simulation. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.852 seconds) .. _sphx_glr_download_auto_reliability_sensitivity_reliability_plot_axial_stressed_beam.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_axial_stressed_beam.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_axial_stressed_beam.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_