Note
Click here to download the full example code
Posterior sampling using a PythonDistribution¶
In this example we are going to show how to do Bayesian inference using the RandomWalkMetropolisHastings
algorithm in a statistical model defined through a PythonDistribution
.
This method is illustrated on a simple lifetime study test-case, which involves censored data, as described hereafter.
In the following, we assume that the lifetime of an industrial component follows the Weibull distribution , with CDF given by .
Our goal is to estimate the model parameters based on a dataset of recorded failures some of which correspond to actual failures, and the remaining are right-censored. Let represent the nature of each datum, if corresponds to an actual failure, if it is right-censored.
Note that the likelihood of each recorded failure is given by the Weibull density:
On the other hand, the likelihood of each right-censored observation is given by:
Furthermore, assume that the prior information available on is represented by independent prior laws, whose respective densities are denoted by and
The posterior distribution of represents the update of the prior information on given the dataset. Its PDF is known up to a multiplicative constant:
The RandomWalkMetropolisHastings
class can be used to sample from the posterior distribution. It relies on the following objects:
The conditional density will be defined as a
PythonDistribution
.The prior probability density reflects beliefs about the possible values of before the experimental data are considered.
Initial values for the calibration parameters.
Proposal distributions used to update each parameter sequentially.
Set up the PythonDistribution¶
The censured Weibuill likelihood is outside the usual catalog of probability distributions in OpenTURNS, hence we need to define it using the PythonDistribution
class.
import numpy as np
import openturns as ot
from openturns.viewer import View
ot.Log.Show(ot.Log.NONE)
ot.RandomGenerator.SetSeed(123)
The following methods must be defined:
getRange: required for conversion to the
Distribution
formatcomputeLogPDF: used by
RandomWalkMetropolisHastings
to evaluate the posterior densitysetParameter used by
RandomWalkMetropolisHastings
to test new parameter values
Note
We formally define a bivariate distribution on the couple, even though has no distribution (it is simply a covariate).
This is not an issue, since the sole purpose of this PythonDistribution
object is to pass the likelihood calculation over to RandomWalkMetropolisHastings
.
class CensoredWeibull(ot.PythonDistribution):
"""
Right-censored Weibull log-PDF calculation
Each data point x is assumed 2D, with:
x[0]: observed functioning time
x[1]: nature of x[0]:
if x[1]=0: x[0] is a censoring time
if x[1]=1: x[0] is a time-to failure
"""
def __init__(self, beta=5000.0, alpha=2.0):
super(CensoredWeibull, self).__init__(2)
self.beta = beta
self.alpha = alpha
def getRange(self):
return ot.Interval([0, 0], [1, 1], [True]*2, [False, True])
def computeLogPDF(self, x):
if not (self.alpha>0.0 and self.beta>0.0):
return -np.inf
log_pdf = -( x[0] / self.beta )**self.alpha
log_pdf += ( self.alpha - 1 ) * np.log( x[0] / self.beta ) * x[1]
log_pdf += np.log( self.alpha / self.beta ) * x[1]
return log_pdf
def setParameter( self, parameter ):
self.beta = parameter[0]
self.alpha = parameter[1]
def getParameter( self ):
return [self.beta, self.alpha]
Convert to Distribution
conditional = ot.Distribution( CensoredWeibull() )
Observations, prior, initial point and proposal distributions¶
Define the observations
Tobs = np.array([4380, 1791, 1611, 1291, 6132, 5694, 5296, 4818, 4818, 4380])
fail = np.array( [True]*4+[False]*6 )
x = ot.Sample( np.vstack((Tobs, fail)).T )
Define a uniform prior distribution for and a Gamma prior distribution for
alpha_min, alpha_max = 0.5, 3.8
a_beta, b_beta = 2, 2e-4
priorCopula = ot.IndependentCopula(2)# prior independence
priorMarginals = [] # prior marginals
priorMarginals.append(ot.Gamma(a_beta, b_beta)) # Gamma prior for beta
priorMarginals.append(ot.Uniform(alpha_min, alpha_max)) # uniform prior for alpha
prior=ot.ComposedDistribution( priorMarginals, priorCopula )
prior.setDescription(['beta','alpha'])
We select prior means as the initial point of the Metropolis-Hastings algorithm.
initialState = ot.Point([a_beta / b_beta, 0.5*(alpha_max - alpha_min)])
For our random walk proposal distributions, we choose normal steps, with standard deviation equal to roughly of the prior range (for the uniform prior) or standard deviation (for the normal prior).
proposal=[]
proposal.append( ot.Normal(0., 0.1 * np.sqrt( a_beta / b_beta**2 ) ) )
proposal.append( ot.Normal(0., 0.1 * ( alpha_max - alpha_min ) ) )
Sample from the posterior distribution¶
RWMHsampler = ot.RandomWalkMetropolisHastings(prior, conditional, x, initialState, proposal)
strategy = ot.CalibrationStrategyCollection(2)
RWMHsampler.setCalibrationStrategyPerComponent(strategy)
RWMHsampler.setVerbose(True)
sampleSize = 10000
sample = RWMHsampler.getSample(sampleSize)
# compute acceptance rate
print("Acceptance rate: %s"%(RWMHsampler.getAcceptanceRate()))
Out:
Acceptance rate: [0.9168,0.7598]
Plot prior to posterior marginal plots
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
grid = ot.GridLayout(1, 2)
grid.setTitle('Bayesian inference')
for parameter_index in range(2):
graph = posterior.getMarginal(parameter_index).drawPDF()
priorGraph = prior.getMarginal(parameter_index).drawPDF()
graph.add(priorGraph)
graph.setColors(ot.Drawable.BuildDefaultPalette(2))
graph.setLegends(['Posterior', 'Prior'])
grid.setGraph(0, parameter_index, graph)
_ = View(grid)
Total running time of the script: ( 0 minutes 14.882 seconds)