Note
Click here to download the full example code
Polynomial chaos over database¶
In this example we are going to create a global approximation of a model response using functional chaos over a design of experiment.
You will need to specify the distribution of the input parameters. If not known, statistical inference can be used to select a possible candidate, and fitting tests can validate such an hypothesis.
from __future__ import print_function
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
Create a function R^n –> R^p For example R^4 –> R
myModel = ot.SymbolicFunction(['x1', 'x2', 'x3', 'x4'], ['1+x1*x2 + 2*x3^2+x4^4'])
# Create a distribution of dimension n
# for example n=3 with indpendent components
distribution = ot.ComposedDistribution(
[ot.Normal(), ot.Uniform(), ot.Gamma(2.75, 1.0), ot.Beta(2.5, 1.0, -1.0, 2.0)])
Prepare the input/output samples
sampleSize = 250
X = distribution.getSample(sampleSize)
Y = myModel(X)
dimension = X.getDimension()
build the orthogonal basis
coll = [ot.StandardDistributionPolynomialFactory(distribution.getMarginal(i)) for i in range(dimension)]
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(coll, enumerateFunction)
create the algorithm
degree = 6
adaptiveStrategy = ot.FixedStrategy(
productBasis, enumerateFunction.getStrataCumulatedCardinal(degree))
projectionStrategy = ot.LeastSquaresStrategy()
algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy, projectionStrategy)
algo.run()
get the metamodel function
result = algo.getResult()
metamodel = result.getMetaModel()
Print residuals
result.getResiduals()
Total running time of the script: ( 0 minutes 0.024 seconds)