GaussKronrodRule¶
- class GaussKronrodRule(*args)¶
- Gauss-Kronrod rule used in the integration algorithm. - Parameters
- myGaussKronrodPairGaussKronrodPair
- It encodes the selected rule. - Available rules: - GaussKronrodRule.G1K3, 
- GaussKronrodRule.G3K7, 
- GaussKronrodRule.G7K15, 
- GaussKronrodRule.G11K23, 
- GaussKronrodRule.G15K31, 
- GaussKronrodRule.G25K51. 
 
 
- myGaussKronrodPair
 - Notes - The Gauss-Kronrod rules - with - enable to build two approximations of the definite integral - defined by: - and: - We have - , - , - , - and - . - The rule - combines a - -point Gauss rule and a - -point Kronrod rule (re-using the - nodes of the Gauss method). The nodes are defined on - and always contain the node 0 when - is odd. - Examples - Create an Gauss-Kronrod rule: - >>> import openturns as ot >>> myRule = ot.GaussKronrodRule(ot.GaussKronrodRule.G15K31) - Methods - Accessor to the object’s name. - getId()- Accessor to the object’s id. - getName()- Accessor to the object’s name. - getOrder()- Accessor to - parameter. - Accessor to the weights used in the Gauss approximation. - Accessor to the positive nodes used in the Gauss-Kronrod approximation. - Accessor to the positive nodes used in the Gauss-Kronrod approximation. - getPair()- Accessor to pair definig the rule. - Accessor to the object’s shadowed id. - Accessor to the object’s visibility state. - Accessor to the first Gauss weight. - Accessor to the first Kronrod weight. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - setName(name)- Accessor to the object’s name. - setShadowedId(id)- Accessor to the object’s shadowed id. - setVisibility(visible)- Accessor to the object’s visibility state. - __init__(*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getOrder()¶
- Accessor to - parameter. - Returns
- mint
- The number of points used for the Gauss approximation. 
 
 
 - getOtherGaussWeights()¶
- Accessor to the weights used in the Gauss approximation. - Returns
- otherGaussWeightsPoint
- The weights 
 
- otherGaussWeights
 
 - getOtherKronrodNodes()¶
- Accessor to the positive nodes used in the Gauss-Kronrod approximation. - Returns
- otherKronrodNodesPoint
- The positive nodes - It contains the positive Gauss nodes as we have - . 
 
- otherKronrodNodes
 
 - getOtherKronrodWeights()¶
- Accessor to the positive nodes used in the Gauss-Kronrod approximation. - Returns
- otherKronrodWeightsPoint
- The weights - . 
 
- otherKronrodWeights
 
 - getPair()¶
- Accessor to pair definig the rule. - Returns
- gkPairGaussKronrodPair
- Id of the Gauss-Kronrod rule. 
 
- gkPair
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - getZeroGaussWeight()¶
- Accessor to the first Gauss weight. - Returns
- zeroKronrodWeightfloat
- The first weight - . 
 
 
 - getZeroKronrodWeight()¶
- Accessor to the first Kronrod weight. - Returns
- zeroKronrodWeightfloat
- The first weight - . 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS