OptimizationAlgorithm¶
- class OptimizationAlgorithm(*args)¶
Base class for optimization wrappers.
- Available constructors:
OptimizationAlgorithm(problem, verbose=False)
- Parameters
- problem
OptimizationProblem
Optimization problem.
- verbosebool
Let solver be more verbose.
- problem
See also
AbdoRackwitz
,Cobyla
,SQP
,TNC
,NLopt
Notes
Class
OptimizationAlgorithm
is an abstract class, which has several implementations. The default implementation isCobyla
Examples
Define an optimization problem to find the minimum of the Rosenbrock function:
>>> import openturns as ot >>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2']) >>> problem = ot.OptimizationProblem(rosenbrock) >>> solver = ot.OptimizationAlgorithm(problem) >>> solver.setStartingPoint([0, 0]) >>> solver.setMaximumResidualError(1.e-3) >>> solver.setMaximumEvaluationNumber(10000) >>> solver.run() >>> result = solver.getResult() >>> x_star = result.getOptimalPoint() >>> y_star = result.getOptimalValue()
Methods
Build
(*args)Instanciate an optimization algorithm from name or problem.
GetAlgorithmNames
(*args)Get the list of available solver names.
Accessor to the object’s name.
getId
()Accessor to the object’s id.
Accessor to the underlying implementation.
Accessor to maximum allowed absolute error.
Accessor to maximum allowed constraint error.
Accessor to maximum allowed number of evaluations.
Accessor to maximum allowed number of iterations.
Accessor to maximum allowed relative error.
Accessor to maximum allowed residual error.
getName
()Accessor to the object’s name.
Accessor to optimization problem.
Accessor to optimization result.
Accessor to starting point.
Accessor to the verbosity flag.
run
()Launch the optimization.
setMaximumAbsoluteError
(maximumAbsoluteError)Accessor to maximum allowed absolute error.
setMaximumConstraintError
(maximumConstraintError)Accessor to maximum allowed constraint error.
Accessor to maximum allowed number of evaluations.
setMaximumIterationNumber
(maximumIterationNumber)Accessor to maximum allowed number of iterations.
setMaximumRelativeError
(maximumRelativeError)Accessor to maximum allowed relative error.
setMaximumResidualError
(maximumResidualError)Accessor to maximum allowed residual error.
setName
(name)Accessor to the object’s name.
setProblem
(problem)Accessor to optimization problem.
setProgressCallback
(*args)Set up a progress callback.
setResult
(result)Accessor to optimization result.
setStartingPoint
(startingPoint)Accessor to starting point.
setStopCallback
(*args)Set up a stop callback.
setVerbose
(verbose)Accessor to the verbosity flag.
- __init__(*args)¶
Initialize self. See help(type(self)) for accurate signature.
- static Build(*args)¶
Instanciate an optimization algorithm from name or problem.
- Parameters
- namestr or
OptimizationProblem
Name of the algorithm or problem to solve. For example TNC, Cobyla or one of the
NLopt
solver names.
- namestr or
- static GetAlgorithmNames(*args)¶
Get the list of available solver names.
- Parameters
- problem
OptimizationProblem
, optional Problem to solve.
- problem
- Returns
- names
Description
List of available solver names.
- names
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getId()¶
Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
- getImplementation()¶
Accessor to the underlying implementation.
- Returns
- implImplementation
The implementation class.
- getMaximumAbsoluteError()¶
Accessor to maximum allowed absolute error.
- Returns
- maximumAbsoluteErrorfloat
Maximum allowed absolute error, where the absolute error is defined by where and are two consecutive approximations of the optimum.
- getMaximumConstraintError()¶
Accessor to maximum allowed constraint error.
- Returns
- maximumConstraintErrorfloat
Maximum allowed constraint error, where the constraint error is defined by where is the current approximation of the optimum and is the function that gathers all the equality and inequality constraints (violated values only)
- getMaximumEvaluationNumber()¶
Accessor to maximum allowed number of evaluations.
- Returns
- Nint
Maximum allowed number of evaluations.
- getMaximumIterationNumber()¶
Accessor to maximum allowed number of iterations.
- Returns
- Nint
Maximum allowed number of iterations.
- getMaximumRelativeError()¶
Accessor to maximum allowed relative error.
- Returns
- maximumRelativeErrorfloat
Maximum allowed relative error, where the relative error is defined by if , else .
- getMaximumResidualError()¶
Accessor to maximum allowed residual error.
- Returns
- maximumResidualErrorfloat
Maximum allowed residual error, where the residual error is defined by if , else .
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getProblem()¶
Accessor to optimization problem.
- Returns
- problem
OptimizationProblem
Optimization problem.
- problem
- getResult()¶
Accessor to optimization result.
- Returns
- result
OptimizationResult
Result class.
- result
- getVerbose()¶
Accessor to the verbosity flag.
- Returns
- verbosebool
Verbosity flag state.
- run()¶
Launch the optimization.
- setMaximumAbsoluteError(maximumAbsoluteError)¶
Accessor to maximum allowed absolute error.
- Parameters
- maximumAbsoluteErrorfloat
Maximum allowed absolute error, where the absolute error is defined by where and are two consecutive approximations of the optimum.
- setMaximumConstraintError(maximumConstraintError)¶
Accessor to maximum allowed constraint error.
- Parameters
- maximumConstraintErrorfloat
Maximum allowed constraint error, where the constraint error is defined by where is the current approximation of the optimum and is the function that gathers all the equality and inequality constraints (violated values only)
- setMaximumEvaluationNumber(maximumEvaluationNumber)¶
Accessor to maximum allowed number of evaluations.
- Parameters
- Nint
Maximum allowed number of evaluations.
- setMaximumIterationNumber(maximumIterationNumber)¶
Accessor to maximum allowed number of iterations.
- Parameters
- Nint
Maximum allowed number of iterations.
- setMaximumRelativeError(maximumRelativeError)¶
Accessor to maximum allowed relative error.
- Parameters
- maximumRelativeErrorfloat
Maximum allowed relative error, where the relative error is defined by if , else .
- setMaximumResidualError(maximumResidualError)¶
Accessor to maximum allowed residual error.
- Parameters
- Maximum allowed residual error, where the residual error is defined by
if , else .
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
- setProblem(problem)¶
Accessor to optimization problem.
- Parameters
- problem
OptimizationProblem
Optimization problem.
- problem
- setProgressCallback(*args)¶
Set up a progress callback.
Can be used to programmatically report the progress of an optimization.
- Parameters
- callbackcallable
Takes a float as argument as percentage of progress.
Examples
>>> import sys >>> import openturns as ot >>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2']) >>> problem = ot.OptimizationProblem(rosenbrock) >>> solver = ot.OptimizationAlgorithm(problem) >>> solver.setStartingPoint([0, 0]) >>> solver.setMaximumResidualError(1.e-3) >>> solver.setMaximumEvaluationNumber(10000) >>> def report_progress(progress): ... sys.stderr.write('-- progress=' + str(progress) + '%\n') >>> solver.setProgressCallback(report_progress) >>> solver.run()
- setResult(result)¶
Accessor to optimization result.
- Parameters
- result
OptimizationResult
Result class.
- result
- setStartingPoint(startingPoint)¶
Accessor to starting point.
- Parameters
- startingPoint
Point
Starting point.
- startingPoint
- setStopCallback(*args)¶
Set up a stop callback.
Can be used to programmatically stop an optimization.
- Parameters
- callbackcallable
Returns an int deciding whether to stop or continue.
Examples
>>> import openturns as ot >>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2']) >>> problem = ot.OptimizationProblem(rosenbrock) >>> solver = ot.OptimizationAlgorithm(problem) >>> solver.setStartingPoint([0, 0]) >>> solver.setMaximumResidualError(1.e-3) >>> solver.setMaximumEvaluationNumber(10000) >>> def ask_stop(): ... return True >>> solver.setStopCallback(ask_stop) >>> solver.run()
- setVerbose(verbose)¶
Accessor to the verbosity flag.
- Parameters
- verbosebool
Verbosity flag state.