UniVariateFunction¶
- class UniVariateFunction(*args)¶
Base class for univariate functions.
Methods
__call__(x)Call self as a function.
draw(xMin, xMax, pointNumber)Draw the function.
Accessor to the object’s name.
getId()Accessor to the object’s id.
Accessor to the underlying implementation.
getName()Accessor to the object’s name.
gradient(x)Compute the gradient at point
.
hessian(x)Compute the hessian at point
.
setName(name)Accessor to the object’s name.
- __init__(*args)¶
Initialize self. See help(type(self)) for accurate signature.
- draw(xMin, xMax, pointNumber)¶
Draw the function.
- Parameters
- x_minfloat, optional
The starting value that is used for meshing the x-axis.
- x_maxfloat, optional,
The ending value that is used for meshing the x-axis.
- n_pointsint, optional
The number of points that is used for meshing the x-axis.
Examples
>>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.UniVariatePolynomial([1.0, 2.0, -3.0, 5.0]) >>> View(f.draw(-10.0, 10.0, 100)).show()
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getId()¶
Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
- getImplementation()¶
Accessor to the underlying implementation.
- Returns
- implImplementation
The implementation class.
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- gradient(x)¶
Compute the gradient at point
.
- Returns
- gradientfloat
The value of the function’s first-order derivative at point
.
Examples
>>> import openturns as ot >>> P = ot.UniVariatePolynomial([1.0, 2.0, 3.0]) >>> print(P.gradient(1.0)) 8.0
- hessian(x)¶
Compute the hessian at point
.
- Parameters
- xfloat
Input value.
- Returns
- hessianfloat
The value of the function’s second-order derivative at point
.
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
OpenTURNS