VertexValuePointToFieldFunction

class VertexValuePointToFieldFunction(*args)

Function mapping a (vertex, value) point to a field.

Parameters
gFunction

Function g: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}.

meshMesh

Mesh on which the function is defined.

Notes

Let us note g : \Rset^{d} \rightarrow \Rset^{d'} a function, \cM_N a mesh of \cD \subset \Rset^{p}. Vertex value (point to field) functions are particular functions that map the field F = (\vect{t}_i, \vect{v}_i)_{1 \leq i \leq N} onto F' relying on the g function such as:

f: \left| \begin{array}{rcl}
           \Rset^d & \rightarrow & \cM_N \times (\Rset^{d'})^{N} \\
            F & \mapsto & F'
          \end{array} \right.

with F = (\vect{t}_i, \vect{v}_i)_{1 \leq i \leq N}, F' = (\vect{t}_i, \vect{v}'_i)_{1 \leq i \leq N} and \cM_{N} a mesh of \cD \subset \Rset^{n}.

A vertex value function keeps the mesh unchanged: the input mesh is equal to the output mesh.

The field F' is defined by the function g: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}:

\forall \vect{t}_i \in \cM_N, \quad \vect{v}'_i = g(\vect{t}_i, \vect{v}_i)

When g is not specified, the constructor builds an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instanciation of such an object is used to extract an actual VertexValuePointToFieldFunction from a Study.

Examples

>>> import openturns as ot

Create a function g : \Rset \times \Rset \rightarrow \Rset such as:

g: \left|\begin{array}{rcl}
            \Rset \times \Rset & \rightarrow & \Rset \\
            (t, x) & \mapsto & (x + t^2)
        \end{array}\right.

>>> g = ot.SymbolicFunction(['t', 'x'], ['x + t^2'])

Convert g into a vertex value function with n=1:

>>> n = 1
>>> grid = ot.RegularGrid(0.0, 0.2, 6)
>>> f = ot.VertexValuePointToFieldFunction(g, grid)
>>> x = [4.0]
>>> print(f(x))
    [ y0   ]
0 : [ 4    ]
1 : [ 4.04 ]
2 : [ 4.16 ]
3 : [ 4.36 ]
4 : [ 4.64 ]
5 : [ 5    ]

Methods

__call__(*args)

Call self as a function.

getCallsNumber()

Get the number of calls of the function.

getClassName()

Accessor to the object’s name.

getFunction()

Get the function of \ell.

getId()

Accessor to the object’s id.

getInputDescription()

Get the description of the input vector.

getInputDimension()

Get the dimension of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

getName()

Accessor to the object’s name.

getOutputDescription()

Get the description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

getOutputMesh()

Get the output mesh.

getShadowedId()

Accessor to the object’s shadowed id.

getVisibility()

Accessor to the object’s visibility state.

hasName()

Test if the object is named.

hasVisibleName()

Test if the object has a distinguishable name.

setInputDescription(inputDescription)

Set the description of the input vector.

setName(name)

Accessor to the object’s name.

setOutputDescription(outputDescription)

Set the description of the output field values.

setShadowedId(id)

Accessor to the object’s shadowed id.

setVisibility(visible)

Accessor to the object’s visibility state.

__init__(*args)

Initialize self. See help(type(self)) for accurate signature.

getCallsNumber()

Get the number of calls of the function.

Returns
callsNumberint

Counts the number of times the function has been called since its creation.

getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getFunction()

Get the function of \ell.

Returns
lFunction

Function \ell: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}.

Examples

>>> import openturns as ot
>>> h = ot.SymbolicFunction(['t', 'x'], ['x + t^2'])
>>> n = 1
>>> mesh = ot.Mesh(n)
>>> myVertexValuePointToFieldFunction = ot.ValueFunction(h, mesh)
>>> print(myVertexValuePointToFieldFunction.getFunction())
[t,x]->[x + t^2]
getId()

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getInputDescription()

Get the description of the input vector.

Returns
inputDescriptionDescription

Description of the input vector.

getInputDimension()

Get the dimension of the input vector.

Returns
dint

Dimension d of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

Parameters
iint or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) to be extracted.

Returns
functionPointToFieldFunction

The initial function restricted to the concerned marginal(s) at the indice(s) i.

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getOutputDescription()

Get the description of the output field values.

Returns
outputDescriptionDescription

Description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

Returns
d’int

Dimension d' of the output field values.

getOutputMesh()

Get the output mesh.

Returns
outputMeshMesh

The mesh \cM_{N'} of the output field.

getShadowedId()

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

getVisibility()

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

setInputDescription(inputDescription)

Set the description of the input vector.

Parameters
inputDescriptionsequence of str

Description of the input vector.

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setOutputDescription(outputDescription)

Set the description of the output field values.

Parameters
outputDescriptionsequence of str

Description of the output field values.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.