TensorApproximationAlgorithm¶
(Source code, png, hires.png, pdf)
- class TensorApproximationAlgorithm(*args)¶
Tensor approximation algorithm.
- Available constructors:
TensorApproximationAlgorithm(inputSample, outputSample, distribution, functionFactory, nk)
- Parameters
- inputSample, outputSample2-d sequence of float
The input random variables and the output samples of a model evaluated apart.
- distribution
Distribution
Joint probability density function of the physical input vector .
- functionFactory
OrthogonalProductFunctionFactory
The basis factory.
- degreessequence of int
The size of the basis for each component Of size equal to the input dimension.
- maxRankint, optional (default=1)
The maximum rank
See also
Notes
TensorApproximationAlgorithm allows to perform a low-rank approximation in the canonical tensor format (refer to [rai2015] for other tensor formats and more details).
The canonical tensor approximation of rank reads:
The available alternating least-squares algorithm consists in successive approximations of the coefficients in the basis of the j-th component:
The full canonical tensor approximation of rank reads:
The decomposition algorithm can be tweaked using the key TensorApproximationAlgorithm-DecompositionMethod.
Examples
>>> import openturns as ot >>> dim = 1 >>> f = ot.SymbolicFunction(['x'], ['x*sin(x)']) >>> uniform = ot.Uniform(0.0, 10.0) >>> distribution = ot.ComposedDistribution([uniform]*dim) >>> factoryCollection = [ot.OrthogonalUniVariateFunctionFamily(ot.OrthogonalUniVariatePolynomialFunctionFactory(ot.StandardDistributionPolynomialFactory(uniform)))] * dim >>> functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection) >>> size = 10 >>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]] >>> sampleY = f(sampleX) >>> nk = [5] * dim >>> maxRank = 1 >>> algo = ot.TensorApproximationAlgorithm(sampleX, sampleY, distribution, functionFactory, nk, maxRank) >>> algo.run()
Get the resulting meta model:
>>> result = algo.getResult() >>> metamodel = result.getMetaModel()
Methods
BuildDistribution
(inputSample)Recover the distribution, with metamodel performance in mind.
Accessor to the object’s name.
Accessor to the joint probability density function of the physical input vector.
getId
()Accessor to the object’s id.
Accessor to the input sample.
Maximum ALS algorithm iteration accessor.
Maximum radius error accessor.
Maximum residual error accessor.
getName
()Accessor to the object’s name.
Accessor to the output sample.
Result accessor.
Accessor to the object’s shadowed id.
Accessor to the object’s visibility state.
hasName
()Test if the object is named.
Test if the object has a distinguishable name.
run
()Compute the response surface.
setDistribution
(distribution)Accessor to the joint probability density function of the physical input vector.
Maximum ALS algorithm iteration accessor.
setMaximumRadiusError
(maximumRadiusError)Maximum radius error accessor.
setMaximumResidualError
(maximumResidualError)Maximum residual error accessor.
setName
(name)Accessor to the object’s name.
setShadowedId
(id)Accessor to the object’s shadowed id.
setVisibility
(visible)Accessor to the object’s visibility state.
- __init__(*args)¶
Initialize self. See help(type(self)) for accurate signature.
- static BuildDistribution(inputSample)¶
Recover the distribution, with metamodel performance in mind.
For each marginal, find the best 1-d continuous parametric model else fallback to the use of a nonparametric one.
The selection is done as follow:
We start with a list of all parametric models (all factories)
For each model, we estimate its parameters if feasible.
We check then if model is valid, ie if its Kolmogorov score exceeds a threshold fixed in the MetaModelAlgorithm-PValueThreshold ResourceMap key. Default value is 5%
We sort all valid models and return the one with the optimal criterion.
For the last step, the criterion might be BIC, AIC or AICC. The specification of the criterion is done through the MetaModelAlgorithm-ModelSelectionCriterion ResourceMap key. Default value is fixed to BIC. Note that if there is no valid candidate, we estimate a non-parametric model (
KernelSmoothing
orHistogram
). The MetaModelAlgorithm-NonParametricModel ResourceMap key allows selecting the preferred one. Default value is HistogramOne each marginal is estimated, we use the Spearman independence test on each component pair to decide whether an independent copula. In case of non independence, we rely on a
NormalCopula
.- Parameters
- sample
Sample
Input sample.
- sample
- Returns
- distribution
Distribution
Input distribution.
- distribution
- getClassName()¶
Accessor to the object’s name.
- Returns
- class_namestr
The object class name (object.__class__.__name__).
- getDistribution()¶
Accessor to the joint probability density function of the physical input vector.
- Returns
- distribution
Distribution
Joint probability density function of the physical input vector.
- distribution
- getId()¶
Accessor to the object’s id.
- Returns
- idint
Internal unique identifier.
- getInputSample()¶
Accessor to the input sample.
- Returns
- inputSample
Sample
Input sample of a model evaluated apart.
- inputSample
- getMaximumAlternatingLeastSquaresIteration()¶
Maximum ALS algorithm iteration accessor.
- Returns
- maxALSIterationint
The maximum number of iterations for the alternating least-squares algorithm used for the rank-1 approximation.
- getMaximumRadiusError()¶
Maximum radius error accessor.
- Returns
- maxRadiusErrorfloat
Convergence criterion on the radius during alternating least-squares algorithm used for the rank-1 approximation.
- getMaximumResidualError()¶
Maximum residual error accessor.
- Returns
- maxResErrfloat
Convergence criterion on the residual during alternating least-squares algorithm used for the rank-1 approximation.
- getName()¶
Accessor to the object’s name.
- Returns
- namestr
The name of the object.
- getOutputSample()¶
Accessor to the output sample.
- Returns
- outputSample
Sample
Output sample of a model evaluated apart.
- outputSample
- getResult()¶
Result accessor.
- Returns
- result
TensorApproximationResult
The result of the approximation.
- result
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns
- idint
Internal unique identifier.
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns
- visiblebool
Visibility flag.
- hasName()¶
Test if the object is named.
- Returns
- hasNamebool
True if the name is not empty.
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns
- hasVisibleNamebool
True if the name is not empty and not the default one.
- run()¶
Compute the response surface.
- setDistribution(distribution)¶
Accessor to the joint probability density function of the physical input vector.
- Parameters
- distribution
Distribution
Joint probability density function of the physical input vector.
- distribution
- setMaximumAlternatingLeastSquaresIteration(maximumAlternatingLeastSquaresIteration)¶
Maximum ALS algorithm iteration accessor.
- Parameters
- maxALSIterationint
The maximum number of iterations for the alternating least-squares algorithm used for the rank-1 approximation.
- setMaximumRadiusError(maximumRadiusError)¶
Maximum radius error accessor.
- Parameters
- maxRadiusErrorfloat
Convergence criterion on the radius during alternating least-squares algorithm used for the rank-1 approximation.
- setMaximumResidualError(maximumResidualError)¶
Maximum residual error accessor.
- Parameters
- maxResErrfloat
Convergence criterion on the residual during alternating least-squares algorithm used for the rank-1 approximation.
- setName(name)¶
Accessor to the object’s name.
- Parameters
- namestr
The name of the object.
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters
- idint
Internal unique identifier.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters
- visiblebool
Visibility flag.