.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_numerical_methods/optimization/plot_ego.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_numerical_methods_optimization_plot_ego.py: EfficientGlobalOptimization examples ==================================== .. GENERATED FROM PYTHON SOURCE LINES 6-18 The EGO algorithm (Jones, 1998) is an adaptative optimization method based on kriging. An initial design of experiment is used to build a first metamodel. At each iteration a new point that maximizes a criterion is chosen as optimizer candidate. The criterion uses a tradeoff between the metamodel value and the conditional variance. Then the new point is evaluated using the original model and the metamodel is relearnt on the extended design of experiment. .. GENERATED FROM PYTHON SOURCE LINES 21-32 .. code-block:: default from openturns.usecases import branin_function as branin_function from openturns.usecases import ackley_function as ackley_function import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt import math as m ot.RandomGenerator.SetSeed(0) ot.ResourceMap.SetAsString("KrigingAlgorithm-LinearAlgebra", "LAPACK") ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 33-37 Ackley test-case ---------------- We first apply the EGO algorithm on the :ref:`Ackley function`. .. GENERATED FROM PYTHON SOURCE LINES 39-41 Define the problem ^^^^^^^^^^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 43-44 The Ackley model is defined in the usecases module in a data class `AckleyModel` : .. GENERATED FROM PYTHON SOURCE LINES 44-46 .. code-block:: default am = ackley_function.AckleyModel() .. GENERATED FROM PYTHON SOURCE LINES 47-48 We get the Ackley function : .. GENERATED FROM PYTHON SOURCE LINES 48-50 .. code-block:: default model = am.model .. GENERATED FROM PYTHON SOURCE LINES 51-52 We specify the domain of the model : .. GENERATED FROM PYTHON SOURCE LINES 52-56 .. code-block:: default dim = am.dim lowerbound = [-4.0] * dim upperbound = [4.0] * dim .. GENERATED FROM PYTHON SOURCE LINES 57-58 We know that the global minimum is at the center of the domain. It is stored in the `AckleyModel` data class. .. GENERATED FROM PYTHON SOURCE LINES 58-60 .. code-block:: default xexact = am.x0 .. GENERATED FROM PYTHON SOURCE LINES 61-62 The minimum value attained `fexact` is : .. GENERATED FROM PYTHON SOURCE LINES 62-65 .. code-block:: default fexact = model(xexact) fexact .. raw:: html

[4.44089e-16]



.. GENERATED FROM PYTHON SOURCE LINES 66-70 .. code-block:: default graph = model.draw(lowerbound, upperbound, [100]*dim) graph.setTitle("Ackley function") view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_001.png :alt: Ackley function :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 71-72 We see that the Ackley function has many local minimas. The global minimum, however, is unique and located at the center of the domain. .. GENERATED FROM PYTHON SOURCE LINES 74-78 Create the initial kriging ^^^^^^^^^^^^^^^^^^^^^^^^^^ Before using the EGO algorithm, we must create an initial kriging. In order to do this, we must create a design of experiment which fills the space. In this situation, the `LHSExperiment` is a good place to start (but other design of experiments may allow to better fill the space). We use a uniform distribution in order to create a LHS design with 50 points. .. GENERATED FROM PYTHON SOURCE LINES 80-88 .. code-block:: default listUniformDistributions = [ot.Uniform( lowerbound[i], upperbound[i]) for i in range(dim)] distribution = ot.ComposedDistribution(listUniformDistributions) sampleSize = 50 experiment = ot.LHSExperiment(distribution, sampleSize) inputSample = experiment.generate() outputSample = model(inputSample) .. GENERATED FROM PYTHON SOURCE LINES 89-95 .. code-block:: default graph = ot.Graph("Initial LHS design of experiment - n=%d" % (sampleSize), "$x_0$", "$x_1$", True) cloud = ot.Cloud(inputSample) graph.add(cloud) view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_002.png :alt: Initial LHS design of experiment - n=50 :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 96-97 We now create the kriging metamodel. We selected the `SquaredExponential` covariance model with a constant basis (the `MaternModel` may perform better in this case). We use default settings (1.0) for the scale parameters of the covariance model, but configure the amplitude to 0.1, which better corresponds to the properties of the Ackley function. .. GENERATED FROM PYTHON SOURCE LINES 99-105 .. code-block:: default covarianceModel = ot.SquaredExponential([1.0] * dim, [0.5]) basis = ot.ConstantBasisFactory(dim).build() kriging = ot.KrigingAlgorithm( inputSample, outputSample, covarianceModel, basis) kriging.run() .. GENERATED FROM PYTHON SOURCE LINES 106-110 Create the optimization problem ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ We finally create the `OptimizationProblem` and solve it with `EfficientGlobalOptimization`. .. GENERATED FROM PYTHON SOURCE LINES 112-117 .. code-block:: default problem = ot.OptimizationProblem() problem.setObjective(model) bounds = ot.Interval(lowerbound, upperbound) problem.setBounds(bounds) .. GENERATED FROM PYTHON SOURCE LINES 118-121 In order to show the various options, we configure them all, even if most could be left to default settings in this case. The most important method is `setMaximumEvaluationNumber` which limits the number of iterations that the algorithm can perform. In the Ackley example, we choose to perform 10 iterations of the algorithm. .. GENERATED FROM PYTHON SOURCE LINES 123-128 .. code-block:: default algo = ot.EfficientGlobalOptimization(problem, kriging.getResult()) algo.setMaximumEvaluationNumber(10) algo.run() result = algo.getResult() .. GENERATED FROM PYTHON SOURCE LINES 129-131 .. code-block:: default result.getIterationNumber() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 10 .. GENERATED FROM PYTHON SOURCE LINES 132-134 .. code-block:: default result.getOptimalPoint() .. raw:: html

[-0.0975796,0.839969]



.. GENERATED FROM PYTHON SOURCE LINES 135-137 .. code-block:: default result.getOptimalValue() .. raw:: html

[3.00508]



.. GENERATED FROM PYTHON SOURCE LINES 138-140 .. code-block:: default fexact .. raw:: html

[4.44089e-16]



.. GENERATED FROM PYTHON SOURCE LINES 141-142 Compared to the minimum function value, we see that the EGO algorithm provides solution which is not very accurate. However, the optimal point is in the neighbourhood of the exact solution, and this is quite an impressive success given the limited amount of function evaluations: only 60 evaluations for the initial DOE and 10 iterations of the EGO algorithm, for a total equal to 70 function evaluations. .. GENERATED FROM PYTHON SOURCE LINES 144-147 .. code-block:: default graph = result.drawOptimalValueHistory() view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_003.png :alt: Optimal value history :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 148-150 .. code-block:: default inputHistory = result.getInputSample() .. GENERATED FROM PYTHON SOURCE LINES 151-165 .. code-block:: default graph = model.draw(lowerbound, upperbound, [100]*dim) graph.setLegends([""]) graph.setTitle( "Ackley function. Initial : black bullet. Solution : green diamond.") cloud = ot.Cloud(inputSample) cloud.setPointStyle("bullet") cloud.setColor("black") graph.add(cloud) cloud = ot.Cloud(inputHistory) cloud.setPointStyle("diamond") cloud.setColor("forestgreen") graph.add(cloud) view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_004.png :alt: Ackley function. Initial : black bullet. Solution : green diamond. :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 166-169 We see that the initial (black) points are dispersed in the whole domain, while the solution points are much closer to the solution. However, the final solution produced by the EGO algorithm is not very accurate. This is why we finalize the process by adding a local optimization step. .. GENERATED FROM PYTHON SOURCE LINES 171-176 .. code-block:: default algo2 = ot.NLopt(problem, 'LD_LBFGS') algo2.setStartingPoint(result.getOptimalPoint()) algo2.run() result = algo2.getResult() .. GENERATED FROM PYTHON SOURCE LINES 177-179 .. code-block:: default result.getOptimalPoint() .. raw:: html

[4.5981e-07,0.952166]



.. GENERATED FROM PYTHON SOURCE LINES 180-181 The corrected solution is now extremely accurate. .. GENERATED FROM PYTHON SOURCE LINES 183-186 .. code-block:: default graph = result.drawOptimalValueHistory() view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_005.png :alt: Optimal value history :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 187-191 Branin test-case ---------------- We now take a look at the :ref:`Branin-Hoo` function. .. GENERATED FROM PYTHON SOURCE LINES 193-195 Define the problem ^^^^^^^^^^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 197-198 The Branin model is defined in the usecases module in a data class `BraninModel` : .. GENERATED FROM PYTHON SOURCE LINES 198-200 .. code-block:: default bm = branin_function.BraninModel() .. GENERATED FROM PYTHON SOURCE LINES 201-202 We load the dimension, .. GENERATED FROM PYTHON SOURCE LINES 202-204 .. code-block:: default dim = bm.dim .. GENERATED FROM PYTHON SOURCE LINES 205-206 the domain boundaries, .. GENERATED FROM PYTHON SOURCE LINES 206-209 .. code-block:: default lowerbound = bm.lowerbound upperbound = bm.upperbound .. GENERATED FROM PYTHON SOURCE LINES 210-211 and we load the model function : .. GENERATED FROM PYTHON SOURCE LINES 211-214 .. code-block:: default model = bm.model objectiveFunction = model.getMarginal(0) .. GENERATED FROM PYTHON SOURCE LINES 215-216 We build a sample out of the three minima : .. GENERATED FROM PYTHON SOURCE LINES 216-218 .. code-block:: default xexact = ot.Sample([bm.xexact1, bm.xexact2, bm.xexact3]) .. GENERATED FROM PYTHON SOURCE LINES 219-220 The minimum value attained `fexact` is : .. GENERATED FROM PYTHON SOURCE LINES 220-223 .. code-block:: default fexact = objectiveFunction(xexact) fexact .. raw:: html
y0
0-1.04741
1-1.04741
2-1.04741


.. GENERATED FROM PYTHON SOURCE LINES 224-228 .. code-block:: default graph = objectiveFunction.draw(lowerbound, upperbound, [100]*dim) graph.setTitle("Branin function") view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_006.png :alt: Branin function :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_006.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 229-230 The Branin function has three local minimas. .. GENERATED FROM PYTHON SOURCE LINES 232-234 Create the initial kriging ^^^^^^^^^^^^^^^^^^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 236-243 .. code-block:: default distribution = ot.ComposedDistribution([ot.Uniform(0.0, 1.0)] * dim) sampleSize = 50 experiment = ot.LHSExperiment(distribution, sampleSize) inputSample = experiment.generate() modelEval = model(inputSample) outputSample = modelEval.getMarginal(0) .. GENERATED FROM PYTHON SOURCE LINES 244-250 .. code-block:: default graph = ot.Graph("Initial LHS design of experiment - n=%d" % (sampleSize), "$x_0$", "$x_1$", True) cloud = ot.Cloud(inputSample) graph.add(cloud) view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_007.png :alt: Initial LHS design of experiment - n=50 :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_007.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 251-256 .. code-block:: default covarianceModel = ot.SquaredExponential([1.0] * dim, [1.0]) basis = ot.ConstantBasisFactory(dim).build() kriging = ot.KrigingAlgorithm( inputSample, outputSample, covarianceModel, basis) .. GENERATED FROM PYTHON SOURCE LINES 257-261 .. code-block:: default noise = [x[1] for x in modelEval] kriging.setNoise(noise) kriging.run() .. GENERATED FROM PYTHON SOURCE LINES 262-264 Create and solve the problem ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. GENERATED FROM PYTHON SOURCE LINES 266-267 We define the problem : .. GENERATED FROM PYTHON SOURCE LINES 267-272 .. code-block:: default problem = ot.OptimizationProblem() problem.setObjective(model) bounds = ot.Interval(lowerbound, upperbound) problem.setBounds(bounds) .. GENERATED FROM PYTHON SOURCE LINES 273-274 We configure the maximum number of function evaluations to 20. We assume that the function is noisy, with a constant variance. .. GENERATED FROM PYTHON SOURCE LINES 276-277 We configure the algorithm : .. GENERATED FROM PYTHON SOURCE LINES 277-286 .. code-block:: default algo = ot.EfficientGlobalOptimization(problem, kriging.getResult()) # assume constant noise var guessedNoiseFunction = 0.1 noiseModel = ot.SymbolicFunction(['x1', 'x2'], [str(guessedNoiseFunction)]) algo.setNoiseModel(noiseModel) algo.setMaximumEvaluationNumber(20) algo.run() result = algo.getResult() .. GENERATED FROM PYTHON SOURCE LINES 287-289 .. code-block:: default result.getIterationNumber() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 20 .. GENERATED FROM PYTHON SOURCE LINES 290-292 .. code-block:: default result.getOptimalPoint() .. raw:: html

[0.124453,0.803571]



.. GENERATED FROM PYTHON SOURCE LINES 293-295 .. code-block:: default result.getOptimalValue() .. raw:: html

[-1.04662]



.. GENERATED FROM PYTHON SOURCE LINES 296-298 .. code-block:: default fexact .. raw:: html
y0
0-1.04741
1-1.04741
2-1.04741


.. GENERATED FROM PYTHON SOURCE LINES 299-301 .. code-block:: default inputHistory = result.getInputSample() .. GENERATED FROM PYTHON SOURCE LINES 302-316 .. code-block:: default graph = objectiveFunction.draw(lowerbound, upperbound, [100]*dim) graph.setLegends([""]) graph.setTitle( "Branin function. Initial : black bullet. Solution : green diamond.") cloud = ot.Cloud(inputSample) cloud.setPointStyle("bullet") cloud.setColor("black") graph.add(cloud) cloud = ot.Cloud(inputHistory) cloud.setPointStyle("diamond") cloud.setColor("forestgreen") graph.add(cloud) view = viewer.View(graph) .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_008.png :alt: Branin function. Initial : black bullet. Solution : green diamond. :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_008.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 317-318 We see that the EGO algorithm found the second local minimum. Given the limited number of function evaluations, the other local minimas have not been explored. .. GENERATED FROM PYTHON SOURCE LINES 320-325 .. code-block:: default graph = result.drawOptimalValueHistory() view = viewer.View(graph, axes_kw={"xticks": range( 0, result.getIterationNumber(), 5)}) plt.show() .. image-sg:: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_009.png :alt: Optimal value history :srcset: /auto_numerical_methods/optimization/images/sphx_glr_plot_ego_009.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 5.802 seconds) .. _sphx_glr_download_auto_numerical_methods_optimization_plot_ego.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_ego.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_ego.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_