ARMALikelihoodFactory¶
- class ARMALikelihoodFactory(*args)¶
- Maximum likelihood estimator of a multivariate ARMA Gaussian process. - Available constructors:
- ARMALikelihoodFactory() - ARMALikelihoodFactory(p, q, d, invertible) - ARMALikelihoodFactory(indP, indQ, d, invertible) 
 - Parameters
- pint
- Order of the AR part of the - process of dimension - . 
- qint
- Order of the MA part of the - process of dimension - . 
- dint, 
- Dimension of the process. 
- invertiblebool, optional
- Restrict the estimation to invertible ARMA processes. - By default: True. 
- indPIndices
- All the - orders that will be investigated. Care: not yet implemented. 
- indQIndices
- All the - orders that will be investigated. Care: not yet implemented. 
 
 - Notes - We suppose here that the white noise is normal with zero mean and covariance matrix - where - . It implies that the ARMA process estimated is normal. - Let - be a multivariate time series of dimension - from an - process. - If we note - , then - is normal with zero mean. Its covariance matrix writes - which depends on the coefficients - for - and - and on the matrix - . - The likelihood of - writes : - where - , - and where - denotes the determinant. - No evaluation of selection criteria such as AIC or BIC is done. - Examples - Create a time series from a scalar ARMA(4,2) and a normal white noise: - >>> import openturns as ot >>> myTimeGrid = ot.RegularGrid(0.0, 0.1, 50) >>> myWhiteNoise = ot.WhiteNoise(ot.Triangular(-1.0, 0.0, 1.0), myTimeGrid) >>> myARCoef = ot.ARMACoefficients([0.4, 0.3, 0.2, 0.1]) >>> myMACoef = ot.ARMACoefficients([0.4, 0.3]) >>> myARMAProcess = ot.ARMA(myARCoef, myMACoef, myWhiteNoise) >>> myTimeSeries = myARMAProcess.getRealization() - Estimate the ARMA process with the maximum likelihood estimator: - >>> myFactory = ot.ARMALikelihoodFactory(4, 2, 1) >>> myARMA = myFactory.build(ot.TimeSeries(myTimeSeries)) - Methods - build(*args)- Estimate the ARMA process. - Accessor to the object's name. - Accessor to the current P order. - Accessor to the current Q order. - getId()- Accessor to the object's id. - Accessor to the initial AR coefficients. - Accessor to the initial covariance matrix of the white noise. - Accessor to the initial MA coefficients. - Accessor to the invertible constraint. - getName()- Accessor to the object's name. - getP()- Accessor to the P orders. - getQ()- Accessor to the Q orders. - Accessor to the object's shadowed id. - Accessor to the verbose mode. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - Accessor to the initial AR coefficients. - setInitialConditions(arCoefficients, ...)- Accessor to the initial AR coefficients. - setInitialCovarianceMatrix(covarianceMatrix)- Accessor to the initial covariance matrix of the white noise. - setInitialMACoefficients(theta)- Accessor to the initial MA coefficients. - setInvertible(invertible)- Accessor to the invertible constraint. - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVerbose(verbose)- Accessor to the verbose mode. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - build(*args)¶
- Estimate the ARMA process. - Available usages:
- build(myTimeSeries) - build(myProcessSample) 
 - Parameters
- myTimeSeriesTimeSeries
- One realization of the process. 
- myProcessSampleProcessSample
- Several realizations of the process. 
 
- myTimeSeries
- Returns
- myARMAARMA
- The process estimated with the maximum likelihood estimator. 
 
- myARMA
 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getCurrentP()¶
- Accessor to the current P order. - Returns
- pint
- Order of the AR part of the - process of dimension - . 
 
 
 - getCurrentQ()¶
- Accessor to the current Q order. - Returns
- qint
- Order of the MA part of the - process of dimension - . 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getInitialARCoefficients()¶
- Accessor to the initial AR coefficients. - Returns
- initARCoeffARMACoefficients
- The initial AR coefficients used for the optimization algorithm. 
 
- initARCoeff
 
 - getInitialCovarianceMatrix()¶
- Accessor to the initial covariance matrix of the white noise. - Returns
- initCovMatCovarianceMatrix
- The initial covariance matrix of the white noise used for the optimization algorithm. 
 
- initCovMat
 
 - getInitialMACoefficients()¶
- Accessor to the initial MA coefficients. - Returns
- initMACoeffARMACoefficients
- The initial MA coefficients used for the optimization algorithm. 
 
- initMACoeff
 
 - getInvertible()¶
- Accessor to the invertible constraint. - Returns
- invertiblebool
- The initial AR coefficients used for the optimization algorithm. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVerbose()¶
- Accessor to the verbose mode. - Returns
- verboseModebool
- Get the verbose mode while both the exploration of the possible models and the optimization steps. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - setInitialARCoefficients(phi)¶
- Accessor to the initial AR coefficients. - Parameters
- initARCoeffARMACoefficients
- The initial AR coefficients used for the optimization algorithm. 
 
- initARCoeff
 
 - setInitialConditions(arCoefficients, maCoefficients, covarianceMatrix)¶
- Accessor to the initial AR coefficients. - Parameters
- initARCoeffARMACoefficients
- The initial AR coefficients used for the optimization algorithm. 
- initMACoeffARMACoefficients
- The initial AR coefficients used for the optimization algorithm. 
- initCovMatrCovarianceMatrix
- The initial covariance matrix of the white noise used for the optimization algorithm. 
 
- initARCoeff
 
 - setInitialCovarianceMatrix(covarianceMatrix)¶
- Accessor to the initial covariance matrix of the white noise. - Parameters
- initCovMatCovarianceMatrix
- The initial covariance matrix of the white noise used for the optimization algorithm. 
 
- initCovMat
 
 - setInitialMACoefficients(theta)¶
- Accessor to the initial MA coefficients. - Parameters
- initMACoeffARMACoefficients
- The initial MA coefficients used for the optimization algorithm. 
 
- initMACoeff
 
 - setInvertible(invertible)¶
- Accessor to the invertible constraint. - Parameters
- invertiblebool
- The initial AR coefficients used for the optimization algorithm. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVerbose(verbose)¶
- Accessor to the verbose mode. - Parameters
- verboseModebool
- Set the verbose mode while both the exploration of the possible models and the optimization steps. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS