Cobyla¶
- class Cobyla(*args)¶
- Constrained Optimization BY Linear Approximations solver. - Available constructors:
- Cobyla(problem) - Cobyla(problem, rhoBeg) 
 - Parameters
- problemOptimizationProblem
- Optimization problem to solve. 
- rhoBegfloat
- A reasonable initial change to the variables. 
 
- problem
 - See also - AbdoRackwitz,- SQP,- TNC,- NLopt
 - Notes - It constructs successive linear approximations of the objective function and constraints via a simplex of - points, and optimizes these approximations in a trust region at each step. This solver use no derivative information and supports all types of constraints. - Examples - >>> import openturns as ot >>> model = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)']) >>> problem = ot.NearestPointProblem(model, 5.0) >>> algo = ot.Cobyla(problem) >>> algo.setMaximumEvaluationNumber(10000) >>> algo.setStartingPoint([1.0] * 4) >>> algo.run() >>> result = algo.getResult() - Methods - Accessor to the object's name. - getId()- Accessor to the object's id. - Accessor to ignore failure flag. - Accessor to maximum allowed absolute error. - Accessor to maximum allowed constraint error. - Accessor to maximum allowed number of evaluations. - Accessor to maximum allowed number of iterations. - Accessor to maximum allowed relative error. - Accessor to maximum allowed residual error. - getName()- Accessor to the object's name. - Accessor to optimization problem. - Accessor to optimization result. - Accessor to rhoBeg parameter. - Accessor to the object's shadowed id. - Accessor to starting point. - Accessor to the verbosity flag. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - run()- Launch the optimization. - setIgnoreFailure(ignoreFailure)- Accessor to ignore failure flag. - setMaximumAbsoluteError(maximumAbsoluteError)- Accessor to maximum allowed absolute error. - setMaximumConstraintError(maximumConstraintError)- Accessor to maximum allowed constraint error. - Accessor to maximum allowed number of evaluations. - setMaximumIterationNumber(maximumIterationNumber)- Accessor to maximum allowed number of iterations. - setMaximumRelativeError(maximumRelativeError)- Accessor to maximum allowed relative error. - setMaximumResidualError(maximumResidualError)- Accessor to maximum allowed residual error. - setName(name)- Accessor to the object's name. - setProblem(problem)- Accessor to optimization problem. - setProgressCallback(*args)- Set up a progress callback. - setResult(result)- Accessor to optimization result. - setRhoBeg(rhoBeg)- Accessor to rhoBeg parameter. - setShadowedId(id)- Accessor to the object's shadowed id. - setStartingPoint(startingPoint)- Accessor to starting point. - setStopCallback(*args)- Set up a stop callback. - setVerbose(verbose)- Accessor to the verbosity flag. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getIgnoreFailure()¶
- Accessor to ignore failure flag. - Returns
- ignore_failurebool
- Whether to ignore failure return codes. 
 
 
 - getMaximumAbsoluteError()¶
- Accessor to maximum allowed absolute error. - Returns
- maximumAbsoluteErrorfloat
- Maximum allowed absolute error, where the absolute error is defined by - where - and - are two consecutive approximations of the optimum. 
 
 
 - getMaximumConstraintError()¶
- Accessor to maximum allowed constraint error. - Returns
- maximumConstraintErrorfloat
- Maximum allowed constraint error, where the constraint error is defined by - where - is the current approximation of the optimum and - is the function that gathers all the equality and inequality constraints (violated values only) 
 
 
 - getMaximumEvaluationNumber()¶
- Accessor to maximum allowed number of evaluations. - Returns
- Nint
- Maximum allowed number of evaluations. 
 
 
 - getMaximumIterationNumber()¶
- Accessor to maximum allowed number of iterations. - Returns
- Nint
- Maximum allowed number of iterations. 
 
 
 - getMaximumRelativeError()¶
- Accessor to maximum allowed relative error. - Returns
- maximumRelativeErrorfloat
- Maximum allowed relative error, where the relative error is defined by - if - , else - . 
 
 
 - getMaximumResidualError()¶
- Accessor to maximum allowed residual error. - Returns
- maximumResidualErrorfloat
- Maximum allowed residual error, where the residual error is defined by - if - , else - . 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getProblem()¶
- Accessor to optimization problem. - Returns
- problemOptimizationProblem
- Optimization problem. 
 
- problem
 
 - getResult()¶
- Accessor to optimization result. - Returns
- resultOptimizationResult
- Result class. 
 
- result
 
 - getRhoBeg()¶
- Accessor to rhoBeg parameter. - Returns
- rhoBegfloat
- A reasonable initial change to the variables. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVerbose()¶
- Accessor to the verbosity flag. - Returns
- verbosebool
- Verbosity flag state. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - run()¶
- Launch the optimization. 
 - setIgnoreFailure(ignoreFailure)¶
- Accessor to ignore failure flag. - Parameters
- ignore_failurebool
- Whether to ignore failure return codes. 
 
 
 - setMaximumAbsoluteError(maximumAbsoluteError)¶
- Accessor to maximum allowed absolute error. - Parameters
- maximumAbsoluteErrorfloat
- Maximum allowed absolute error, where the absolute error is defined by - where - and - are two consecutive approximations of the optimum. 
 
 
 - setMaximumConstraintError(maximumConstraintError)¶
- Accessor to maximum allowed constraint error. - Parameters
- maximumConstraintErrorfloat
- Maximum allowed constraint error, where the constraint error is defined by - where - is the current approximation of the optimum and - is the function that gathers all the equality and inequality constraints (violated values only) 
 
 
 - setMaximumEvaluationNumber(maximumEvaluationNumber)¶
- Accessor to maximum allowed number of evaluations. - Parameters
- Nint
- Maximum allowed number of evaluations. 
 
 
 - setMaximumIterationNumber(maximumIterationNumber)¶
- Accessor to maximum allowed number of iterations. - Parameters
- Nint
- Maximum allowed number of iterations. 
 
 
 - setMaximumRelativeError(maximumRelativeError)¶
- Accessor to maximum allowed relative error. - Parameters
- maximumRelativeErrorfloat
- Maximum allowed relative error, where the relative error is defined by - if - , else - . 
 
 
 - setMaximumResidualError(maximumResidualError)¶
- Accessor to maximum allowed residual error. - Parameters
- Maximum allowed residual error, where the residual error is defined by
- if - , else - . 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setProblem(problem)¶
- Accessor to optimization problem. - Parameters
- problemOptimizationProblem
- Optimization problem. 
 
- problem
 
 - setProgressCallback(*args)¶
- Set up a progress callback. - Can be used to programmatically report the progress of an optimization. - Parameters
- callbackcallable
- Takes a float as argument as percentage of progress. 
 
 - Examples - >>> import sys >>> import openturns as ot >>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2']) >>> problem = ot.OptimizationProblem(rosenbrock) >>> solver = ot.OptimizationAlgorithm(problem) >>> solver.setStartingPoint([0, 0]) >>> solver.setMaximumResidualError(1.e-3) >>> solver.setMaximumEvaluationNumber(10000) >>> def report_progress(progress): ... sys.stderr.write('-- progress=' + str(progress) + '%\n') >>> solver.setProgressCallback(report_progress) >>> solver.run() 
 - setResult(result)¶
- Accessor to optimization result. - Parameters
- resultOptimizationResult
- Result class. 
 
- result
 
 - setRhoBeg(rhoBeg)¶
- Accessor to rhoBeg parameter. - Parameters
- rhoBegfloat
- A reasonable initial change to the variables. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setStartingPoint(startingPoint)¶
- Accessor to starting point. - Parameters
- startingPointPoint
- Starting point. 
 
- startingPoint
 
 - setStopCallback(*args)¶
- Set up a stop callback. - Can be used to programmatically stop an optimization. - Parameters
- callbackcallable
- Returns an int deciding whether to stop or continue. 
 
 - Examples - >>> import openturns as ot >>> rosenbrock = ot.SymbolicFunction(['x1', 'x2'], ['(1-x1)^2+100*(x2-x1^2)^2']) >>> problem = ot.OptimizationProblem(rosenbrock) >>> solver = ot.OptimizationAlgorithm(problem) >>> solver.setStartingPoint([0, 0]) >>> solver.setMaximumResidualError(1.e-3) >>> solver.setMaximumEvaluationNumber(10000) >>> def ask_stop(): ... return True >>> solver.setStopCallback(ask_stop) >>> solver.run() 
 - setVerbose(verbose)¶
- Accessor to the verbosity flag. - Parameters
- verbosebool
- Verbosity flag state. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS