DistributionParameters

class DistributionParameters(*args)

Define a distribution with particular parameters.

This class enables to create a set of non-native parameters in order to define distribution.

A DistributionParameters object can be used through its derived classes:

Methods

__call__(inP)

Call self as a function.

evaluate()

Compute native parameters values.

getClassName()

Accessor to the object's name.

getDescription()

Get the description of the parameters.

getDistribution()

Build a distribution based on a set of native parameters.

getId()

Accessor to the object's id.

getImplementation()

Accessor to the underlying implementation.

getName()

Accessor to the object's name.

getValues()

Accessor to the parameters values.

gradient()

Get the gradient.

inverse(inP)

Convert to native parameters.

setName(name)

Accessor to the object's name.

setValues(values)

Accessor to the parameters values.

__init__(*args)
evaluate()

Compute native parameters values.

Returns
valuesPoint

The native parameter values.

getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getDescription()

Get the description of the parameters.

Returns
collectionDescription

List of parameters names.

getDistribution()

Build a distribution based on a set of native parameters.

Returns
distributionDistribution

Distribution built with the native parameters.

getId()

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getImplementation()

Accessor to the underlying implementation.

Returns
implImplementation

The implementation class.

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getValues()

Accessor to the parameters values.

Returns
valuesPoint

List of parameters values.

gradient()

Get the gradient.

Returns
gradientMatrix

The gradient of the transformation of the native parameters into the new parameters.

Notes

If we note (p_1, \dots, p_q) the native parameters and (p'_1, \dots, p'_q) the new ones, then the gradient matrix is \left( \dfrac{\partial p'_i}{\partial p_j} \right)_{1 \leq i,j \leq  q}.

inverse(inP)

Convert to native parameters.

Parameters
inPsequence of float

The non-native parameters.

Returns
outPPoint

The native parameters.

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setValues(values)

Accessor to the parameters values.

Parameters
valuessequence of float

List of parameters values.