FieldToPointFunction

class FieldToPointFunction(*args)

Function mapping a field into a point.

Parameters
inputMeshMesh

The input mesh

inputDimpositive int

Dimension of the input field values d

outputDimpositive int

Dimension of the output vector d’

Notes

Field to point functions act on fields to produce points:

f: \left| \begin{array}{rcl}
            \cM_N \times (\Rset^d)^N & \rightarrow &\Rset^{d'} \\
            F & \mapsto & \vect{v}'
          \end{array} \right.

with \cM_N a mesh of \cD \subset \Rset^n.

A field is represented by a collection (\vect{t}_i, \vect{v}_i)_{1 \leq i \leq N} of elements of \cM_N \times (\Rset^d)^N where \vect{t}_i is a vertex of \cM_N and \vect{v}_i the associated value in \Rset^d.

The two first constructors build an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instanciation of such an object is used to extract an actual FieldToPointFunction from a Study.

Examples

>>> import openturns as ot

Use the class OpenTURNSPythonFieldToPointFunction to create a function that acts on fields of input dimension n=1 and input dimension d=2 and returns their spatial mean vector of dimension d'=2.

Using the class OpenTURNSPythonFieldToPointFunction allows to define a persistent state between the evaluations of the function.

>>> class FUNC(ot.OpenTURNSPythonFieldToPointFunction):
...     def __init__(self):
...         # first argument:
...         mesh = ot.RegularGrid(0.0, 0.1, 11)
...         super(FUNC, self).__init__(mesh, 2, 2)
...         self.setInputDescription(['R', 'S'])
...         self.setOutputDescription(['T', 'U'])  
...     def _exec(self, X):
...         Xs = ot.Sample(X)
...         Y = Xs.computeMean()
...         return Y
>>> F = FUNC()

Create the associated FieldToPointFunction:

>>> myFunc = ot.FieldToPointFunction(F)

It is also possible to create a FieldToPointFunction from a python function as follows:

>>> def myPyFunc(X):
...     Xs = ot.Sample(X)
...     Y = Xs.computeMean()
...     return Y
>>> inputDim = 2
>>> outputDim = 2
>>> mesh = ot.RegularGrid(0.0, 0.1, 11)
>>> myFunc = ot.PythonFieldToPointFunction(mesh, inputDim, outputDim, myPyFunc)

Evaluate the function on a field:

>>> myField = ot.Field(mesh, ot.Normal(2).getSample(11))
>>> Y = myFunc(myField)

Methods

__call__(*args)

Call self as a function.

getCallsNumber()

Get the number of calls of the function.

getClassName()

Accessor to the object's name.

getId()

Accessor to the object's id.

getImplementation()

Accessor to the underlying implementation.

getInputDescription()

Get the description of the input field values.

getInputDimension()

Get the dimension of the input field values.

getInputMesh()

Get the mesh associated to the input domain.

getMarginal(*args)

Get the marginal(s) at given indice(s).

getName()

Accessor to the object's name.

getOutputDescription()

Get the description of the output vector.

getOutputDimension()

Get the dimension of the output vector.

setInputDescription(inputDescription)

Set the description of the input field values.

setName(name)

Accessor to the object's name.

setOutputDescription(outputDescription)

Set the description of the output vector.

__init__(*args)
getCallsNumber()

Get the number of calls of the function.

Returns
callsNumberint

Counts the number of times the function has been called since its creation.

getClassName()

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getImplementation()

Accessor to the underlying implementation.

Returns
implImplementation

The implementation class.

getInputDescription()

Get the description of the input field values.

Returns
inputDescriptionDescription

Description of the input field values.

getInputDimension()

Get the dimension of the input field values.

Returns
dint

Dimension d of the input field values.

getInputMesh()

Get the mesh associated to the input domain.

Returns
inputMeshMesh

The input mesh \cM_{N'}.

getMarginal(*args)

Get the marginal(s) at given indice(s).

Parameters
iint or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) to be extracted.

Returns
functionFieldToPointFunction

The initial function restricted to the concerned marginal(s) at the indice(s) i.

getName()

Accessor to the object’s name.

Returns
namestr

The name of the object.

getOutputDescription()

Get the description of the output vector.

Returns
outputDescriptionDescription

Description of the output vector.

getOutputDimension()

Get the dimension of the output vector.

Returns
d’int

Dimension d' of the output vector.

setInputDescription(inputDescription)

Set the description of the input field values.

Parameters
inputDescriptionsequence of str

Description of the input field values.

setName(name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setOutputDescription(outputDescription)

Set the description of the output vector.

Parameters
outputDescriptionsequence of str

Description of the output vector.