FittingTest_AICC¶
- FittingTest_AICC(*args)¶
- Compute the Akaike information criterion (with correction for small data). - Refer to Akaike Information Criterion (AIC). - Parameters
- sample2-d sequence of float
- Tested sample. 
- modelDistributionorDistributionFactory
- Tested distribution. 
- n_parametersint, , optional 
- The number of parameters in the distribution that have been estimated from the sample. This parameter must not be provided if a - DistributionFactorywas provided as the second argument (it will internally be set to the number of parameters estimated by the- DistributionFactory). It can be specified if a- Distributionwas provided as the second argument, but if it is not, it will be set equal to 0.
 
- Returns
- estimatedDistDistribution
- Estimated distribution (case factory as argument) 
- AICCfloat
- The Akaike information criterion (corrected). 
 
- estimatedDist
 - Notes - This is used for model selection, especially with small data samples. In case we set a factory argument, the method returns both the estimated distribution and AICc value. Otherwise it returns only the AICc value. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> ot.FittingTest.AICC(sample, distribution) 2.793869... >>> ot.FittingTest.AICC(sample, distribution, 2) 2.942017... >>> fitted_dist, aicc = ot.FittingTest.AICC(sample, ot.NormalFactory()) >>> aicc 2.932204... 
 OpenTURNS
      OpenTURNS