FittingTest_BestModelBIC¶
- FittingTest_BestModelBIC(*args)¶
- Select the best model according to the Bayesian information criterion. - Parameters
- sample2-d sequence of float
- Tested sample. 
- modelslist of DistributionorDistributionFactory
- Tested distributions. 
 
- Returns
- best_modelDistribution
- The distribution that fits the sample best according to the criterion. This may raise a warning if the best model does not perform well. 
- best_bicfloat
- The Bayesian information criterion with the best model. 
 
- best_model
 - See also - Notes - The best model is the one which achieves the smallest BIC value. In case of ties, the order in the list matters: the first one which minimizes the BIC in the list is selected. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> tested_distributions = [ot.ExponentialFactory(), ot.NormalFactory()] >>> best_model, best_bic = ot.FittingTest.BestModelBIC(sample, tested_distributions) >>> print(best_model) Normal(mu = -0.0944924, sigma = 0.989808) 
 OpenTURNS
      OpenTURNS