FittingTest_Kolmogorov¶
- FittingTest_Kolmogorov(sample, distribution, level=0.05)¶
- Perform a Kolmogorov goodness-of-fit test for 1-d continuous distributions. - Refer to Kolmogorov-Smirnov fitting test. - Parameters
- sample2-d sequence of float
- Tested sample. 
- modelDistribution.
- levelfloat, , optional (default level = 0.05). 
- This is the risk - of committing a Type I error, that is an incorrect rejection of a true null hypothesis. 
 
- Returns
- test_resultTestResult
- Test result. 
 
- test_result
- Raises
- TypeError :
- If the distribution is not continuous or if the sample is multivariate. 
 
 - Notes - The distribution is supposed to be fully specified, i.e. no parameter has been estimated from the given sample. This uses an external C implementation of the Kolmogorov cumulative distribution function by [simard2011]. - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> test_result = ot.FittingTest.Kolmogorov(sample, distribution) >>> test_result class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=true p-value threshold=0.05 p-value=0.970418 statistic=0.0845532 description=[Normal(mu = 0, sigma = 1) vs sample Normal] - We set the level of the Kolmogorov-Smirnov test to 0.01. This parameter value rejects a sample less often than the default value 0.05. - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Normal() >>> sample = distribution.getSample(30) >>> level = 0.01 >>> test_result = ot.FittingTest.Kolmogorov(sample, distribution, level) 
 OpenTURNS
      OpenTURNS