KarhunenLoeveValidation¶
(Source code, png, hires.png, pdf)
 
- class KarhunenLoeveValidation(*args)¶
- Karhunen-Loeve decomposition validation services. - Parameters
- sampleProcessSample
- Observed (or learning) sample 
- resultKarhunenLoeveResult
- Decomposition result 
- trendTrendTransform, optional
- Process trend, useful when the basis built using the covariance function from the space of trajectories is not well suited to approximate the mean function of the underlying process. 
 
- sample
 - Examples - >>> import openturns as ot >>> N = 20 >>> interval = ot.Interval(-1.0, 1.0) >>> mesh = ot.IntervalMesher([N - 1]).build(interval) >>> covariance = ot.SquaredExponential() >>> process = ot.GaussianProcess(covariance, mesh) >>> sampleSize = 100 >>> processSample = process.getSample(sampleSize) >>> threshold = 1.0e-7 >>> algo = ot.KarhunenLoeveSVDAlgorithm(processSample, threshold) >>> algo.run() >>> klresult = algo.getResult() >>> validation = ot.KarhunenLoeveValidation(processSample, klresult) - Methods - Compute residual field. - Compute residual mean field. - Compute residual standard deviation field. - Plot the quality of representation of each observation. - Plot the weight of representation of each observation. - Plot a model vs metamodel graph for visual validation. - Accessor to the object's name. - getId()- Accessor to the object's id. - getName()- Accessor to the object's name. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - computeResidual()¶
- Compute residual field. - Returns
- graphProcessSample
- The visual validation graph. 
 
- graph
 
 - computeResidualStandardDeviation()¶
- Compute residual standard deviation field. - Returns
- stddevField
- The residual standard deviation field. 
 
- stddev
 
 - drawObservationQuality()¶
- Plot the quality of representation of each observation. - For each observation N we plot the quality of representation: - with - Returns
- graphGraph
- The visual validation graph. 
 
- graph
 
 - drawObservationWeight(k=0)¶
- Plot the weight of representation of each observation. - For each observation we plot the weight according to the k-th mode using the projection of the observed sample: - Parameters
- kint, , default=0 
- Mode index 
 
- kint, 
- Returns
- graphGraph
- The visual validation graph. 
 
- graph
 
 - drawValidation()¶
- Plot a model vs metamodel graph for visual validation. - Returns
- graphGridLayout
- The visual validation graph. 
 
- graph
 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS