MonomialFunction¶
- class MonomialFunction(*args)¶
- Monomial function class. - Available constructors:
- MonomialFunction(degree) 
 - Parameters
- degreint
- Degree of the monomial function 
 
 - Notes - The monomial function defines as : - Examples - Create a standard absolute exponential covariance function: - >>> import openturns as ot >>> P = ot.MonomialFunction(3) - Methods - __call__(x)- Call self as a function. - draw(xMin, xMax, pointNumber)- Draw the function. - Accessor to the object's name. - getId()- Accessor to the object's id. - getName()- Accessor to the object's name. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - gradient(x)- Compute the gradient at point - . - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - hessian(x)- Compute the hessian at point - . - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - draw(xMin, xMax, pointNumber)¶
- Draw the function. - Parameters
- x_minfloat, optional
- The starting value that is used for meshing the x-axis. 
- x_maxfloat, optional, 
- The ending value that is used for meshing the x-axis. 
- n_pointsint, optional
- The number of points that is used for meshing the x-axis. 
 
 - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.UniVariatePolynomial([1.0, 2.0, -3.0, 5.0]) >>> View(f.draw(-10.0, 10.0, 100)).show() 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - gradient(x)¶
- Compute the gradient at point - . - Returns
- gradientfloat
- The value of the monomial’s first-order derivative at point - . 
 
 - Examples - >>> import openturns as ot >>> P = ot.MonomialFunction(3) >>> print(P.gradient(1.0)) 3.0 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - hessian(x)¶
- Compute the hessian at point - . - Parameters
- xfloat
- Input value. 
 
- Returns
- hessianfloat
- The value of the monomial’s second-order derivative at point - . 
 
 - Examples - >>> import openturns as ot >>> P = ot.MonomialFunction(3) >>> print(P.hessian(1.0)) 6.0 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS