NonStationaryCovarianceModelFactory¶
(Source code, png, hires.png, pdf)
 
- class NonStationaryCovarianceModelFactory(*args)¶
- Estimation of a non stationary covariance model. - Refer to Estimation of a non stationary cov. model. - Notes - We consider - be a multivariate process of dimension d where - . We denote - the vertices of the mesh - . - X is supposed to be a second order process and we note - its covariance function. X may be stationary or non stationary as well. - We suppose that we have K fields and we note - the values of the field k on the mesh - . - We recall that the covariance function C writes: - where the mean function - is defined by: - First, we estimate the covariance function C on the vertices of the mesh - using the empirical mean estimator: - Then, we build a covariance function defined on - which is a piecewise constant function defined on - by: - where k is such that - is the vertex of - the nearest to - and - the nearest to - . - Methods - build(*args)- Estimate the covariance model. - buildAsCovarianceMatrix(sample[, isCentered])- Estimate the covariance model as a covariance matrix. - buildAsUserDefinedCovarianceModel(sample[, ...])- Estimate the covariance model as a User defined covariance model. - Accessor to the object's name. - getId()- Accessor to the object's id. - getName()- Accessor to the object's name. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - build(*args)¶
- Estimate the covariance model. - Parameters
- sampleFieldsProcessSample
- The fields used to estimate the covariance model which is not supposed to be stationary. 
 
- sampleFields
- Returns
- covEstCovarianceModelImplementation
- The estimated covariance model. 
 
- covEst
 - Examples - Create the covariance model, a mesh and a process: - >>> import openturns as ot >>> myModel = ot.AbsoluteExponential([0.1]*2) >>> myMesh = ot.IntervalMesher([10]*2).build(ot.Interval([0.0]*2, [1.0]*2)) >>> myProcess = ot.GaussianProcess(myModel, myMesh) - Generate 10 fields: - >>> mySample = myProcess.getSample(10) - Estimate the covariance model without supposing the stationarity: - >>> myEstCov = ot.NonStationaryCovarianceModelFactory().build(mySample) 
 - buildAsCovarianceMatrix(sample, isCentered=False)¶
- Estimate the covariance model as a covariance matrix. - Parameters
- sampleFieldsProcessSample
- The fields used to estimate the covariance model. 
- isCenteredbool, optional
- Flag telling if the given sample is from a centered process or if it has to be centered by the empirical mean. Default value is False. 
 
- sampleFields
- Returns
- covEstCovarianceMatrix
- The unbiased estimation of the discretization of the covariance function over the mesh defining the given sample. 
 
- covEst
 
 - buildAsUserDefinedCovarianceModel(sample, isCentered=False)¶
- Estimate the covariance model as a User defined covariance model. - Parameters
- sampleFieldsProcessSample
- The fields used to estimate the covariance model. 
- isCenteredbool, optional
- Flag telling if the given sample is from a centered process or if it has to be centered by the empirical mean. Default value is False. 
 
- sampleFields
- Returns
- covEstUserDefinedCovarianceModel
- The estimated covariance model that can be used as a - UserDefinedCovarianceModel.
 
- covEst
 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS