SoizeGhanemFactory¶
- class SoizeGhanemFactory(*args)¶
- SoizeGhanem orthonormal multivariate functional family. - For the any multivariate distribution with continuous copula. - Available constructor:
- SoizeGhanemFactory() - SoizeGhanemFactory(measure, useCopula) - SoizeGhanemFactory(measure, phi, useCopula) 
 - Parameters
- measureDistribution
- The measure defining the inner product of the factory. 
- phiEnumerateFunction
- The function mapping the index of the multivariate basis function to the multi-index of the marginal variables. Default is to use the - LinearEnumerateFunction.
- useCopulabool
- Flag to tell if the copula density has to be used directly or indirectly through the joint PDF of the measure. Default is True. 
 
- measure
 - Notes - This class implements the multivariate orthonormal basis associated with an arbitrary multidimensional distribution with continuous copula and marginals with well-defined orthonormal polyomials of arbitrary order. The details are in [soizeghanem2004]. - Examples - >>> import openturns as ot >>> marginals = [ot.Uniform(-1.0, 1.0), ot.Normal(0.0, 1.0)] >>> copula = ot.ClaytonCopula(1.0) >>> distribution = ot.ComposedDistribution(marginals, copula) >>> factory = ot.SoizeGhanemFactory(distribution) >>> point = [0.5]*2 >>> for i in range(3): ... value = factory.build(i)(point) ... print('SoizeGhanem_' + str(i) + '(' + str(point) + ')=' + str(value)) SoizeGhanem_0([0.5, 0.5])=[0.870518] SoizeGhanem_1([0.5, 0.5])=[0.753891] SoizeGhanem_2([0.5, 0.5])=[0.435259] - Methods - build(*args)- Get the term of the basis collection at a given index or multi-indices. - Accessor to the object's name. - Get the dimension of the Basis. - Return the enumerate function. - getId()- Accessor to the object's id. - Get the measure upon which the basis is orthogonal. - getName()- Accessor to the object's name. - Accessor to the object's shadowed id. - getSize()- Get the size of the Basis. - getSubBasis(indices)- Get a sub-basis of the Basis. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - isFinite()- Tell whether the basis is finite. - Tell whether the basis is orthogonal. - setName(name)- Accessor to the object's name. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - add - __init__(*args)¶
 - build(*args)¶
- Get the term of the basis collection at a given index or multi-indices. - Parameters
- indexint
- Indicates the term of the basis which must be constructed. In other words, index is used by a bijection from - to - (with - the dimension of the basis). The bijection is detailed in - EnumerateFunction.
- indicessequence of int
- Indicates the term of the basis which must be constructed. In other words, indices is used by a bijection from - to - (with - the dimension of the basis). The bijection is the inverse of - EnumerateFunction.
 
- Returns
- functionFunction
- The term of the basis collection at the index index or the inverse of indices. 
 
- function
 - Examples - >>> import openturns as ot >>> # Create an orthogonal basis >>> polynomialCollection = [ot.LegendreFactory(), ot.LaguerreFactory(), ot.HermiteFactory()] >>> productBasis = ot.OrthogonalBasis(ot.OrthogonalProductPolynomialFactory(polynomialCollection)) >>> termBasis = productBasis.build(4) >>> print(termBasis.getEvaluation()) -1.11803 + 3.3541 * x0^2 >>> termBasis = productBasis.build(5) >>> print(termBasis.getEvaluation()) (1.73205 * x0) * (-1 + x1) >>> termBasis2 = productBasis.build([1,1,0]) >>> print(termBasis2.getEvaluation()) (1.73205 * x0) * (-1 + x1) 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getDimension()¶
- Get the dimension of the Basis. - Returns
- dimensionint
- Dimension of the Basis. 
 
 
 - getEnumerateFunction()¶
- Return the enumerate function. - Returns
- enumerateFunctionEnumerateFunction
- Enumerate function that translates unidimensional indices into multidimensional indices. 
 
- enumerateFunction
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getMeasure()¶
- Get the measure upon which the basis is orthogonal. - Returns
- measureDistribution
- Measure upon which the basis is orthogonal. 
 
- measure
 - Examples - >>> import openturns as ot >>> # Create an orthogonal basis >>> polynomialCollection = [ot.LegendreFactory(), ot.LaguerreFactory(), ot.HermiteFactory()] >>> productBasis = ot.OrthogonalBasis(ot.OrthogonalProductPolynomialFactory(polynomialCollection)) >>> measure = productBasis.getMeasure() >>> print(measure.getMarginal(0)) Uniform(a = -1, b = 1) >>> print(measure.getMarginal(1)) Gamma(k = 1, lambda = 1, gamma = 0) >>> print(measure.getMarginal(2)) Normal(mu = 0, sigma = 1) 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getSize()¶
- Get the size of the Basis. - Returns
- sizeint
- Size of the Basis. 
 
 
 - getSubBasis(indices)¶
- Get a sub-basis of the Basis. - Parameters
- indiceslist of int
- Indices of the terms of the Basis put in the sub-basis. 
 
- Returns
- subBasislist of Function
- Functions defining a sub-basis. 
 
- subBasislist of 
 - Examples - >>> import openturns as ot >>> dimension = 3 >>> input = ['x0', 'x1', 'x2'] >>> functions = [] >>> for i in range(dimension): ... functions.append(ot.SymbolicFunction(input, [input[i]])) >>> basis = ot.Basis(functions) >>> subbasis = basis.getSubBasis([1]) >>> print(subbasis[0].getEvaluation()) [x0,x1,x2]->[x1] 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - isFinite()¶
- Tell whether the basis is finite. - Returns
- isFinitebool
- True if the basis is finite. 
 
 
 - isOrthogonal()¶
- Tell whether the basis is orthogonal. - Returns
- isOrthogonalbool
- True if the basis is orthogonal. 
 
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS