SphericalModel¶
(Source code, png, hires.png, pdf)
 
- class SphericalModel(*args)¶
- Spherical covariance function. - Available constructors:
- SphericalModel(spatialDim=1) - SphericalModel(scale, amplitude) - SphericalModel(scale, amplitude, radius) 
 - Parameters
- spatialDimint
- Spatial dimension - . By default, equal to 1. 
- scalesequence of positive floats
- Scale coefficient - . The size of - is the input dimension. 
- amplitudesequence of positive floats
- Amplitude of the process - . Must be of size equal to 1. By default, equal to - . 
- radiusfloat, 
- Radius of the sphere on which the covariance model is not zero. By default, equal to 1. 
 
 - See also - Notes - The spherical function is a stationary covariance function with dimension - . - We consider the scalar stochastic process - , where - is an event, - is a domain of - . - The spherical function is defined on the sphere which ray is - : - The function is equal to zero outside the sphere. - The correlation function - writes: - and is equal to zero outside the sphere. - Examples - Create a standard spherical covariance function: - >>> import openturns as ot >>> covModel = ot.SphericalModel(2) >>> t = [0.1, 0.3] >>> s = [0.2, 0.4] >>> print(covModel(s, t)) [[ 0.789282 ]] >>> tau = [0.1, 0.3] >>> print(covModel(tau)) [[ 0.54147 ]] - Create a spherical covariance function specifying the scale, amplitude vectors: - >>> covarianceModel = ot.SphericalModel([0.2, 0.3], [2.5]) - Create a squared exponential covariance function specifying the scale vector, the amplitude and radius: - >>> covModel3 = ot.SphericalModel([0.2, 0.3], [2.5], 2.3) - Methods - __call__(*args)- Evaluate the covariance function. - computeAsScalar(*args)- Compute the covariance function for scalar model. - computeCrossCovariance(*args)- computeCrossCovariance the covariance function on a given mesh. - discretize(*args)- Discretize the covariance function on a given mesh. - discretizeAndFactorize(*args)- Discretize and factorize the covariance function on a given mesh. - Discretize and factorize the covariance function on a given mesh. - discretizeHMatrix(*args)- Discretize the covariance function on a given mesh using HMatrix result. - discretizeRow(vertices, p)- (TODO) - draw(*args)- Draw a specific component of the covariance model with input dimension 1. - Accessor to the active parameter set. - Get the amplitude parameter - of the covariance function. - Accessor to the object's name. - Get the full parameters of the covariance function. - Get the description full parameters of the covariance function. - getId()- Accessor to the object's id. - Get the input dimension - of the covariance function. - getMarginal(*args)- Get the ith marginal of the model. - getName()- Accessor to the object's name. - Accessor to the nugget factor. - Get the spatial correlation matrix - of the covariance function. - Get the dimension - of the covariance function. - Get the parameters of the covariance function. - Get the description of the covariance function parameters. - Accessor to the radius. - getScale()- Get the scale parameter - of the covariance function. - Accessor to the object's shadowed id. - Accessor to the object's visibility state. - hasName()- Test if the object is named. - Test if the object has a distinguishable name. - Test whether the model is diagonal or not. - Test whether the model is stationary or not. - parameterGradient(s, t)- Compute the gradient according to the parameters. - partialGradient(s, t)- Compute the gradient of the covariance function. - setActiveParameter(active)- Accessor to the active parameter set. - setAmplitude(amplitude)- Set the amplitude parameter - of the covariance function. - setFullParameter(parameter)- Set the full parameters of the covariance function. - setName(name)- Accessor to the object's name. - setNuggetFactor(nuggetFactor)- Set the nugget factor for the variance of the observation error. - setOutputCorrelation(correlation)- Set the spatial correlation matrix - of the covariance function. - setParameter(parameter)- Set the parameters of the covariance function. - setRadius(radius)- Accessor to the radius. - setScale(scale)- Set the scale parameter - of the covariance function. - setShadowedId(id)- Accessor to the object's shadowed id. - setVisibility(visible)- Accessor to the object's visibility state. - __init__(*args)¶
 - computeAsScalar(*args)¶
- Compute the covariance function for scalar model. - Available usages:
- computeAsScalar(s, t) - computeAsScalar(tau) 
 - Parameters
- s, tfloats (if ) or sequences of floats (any ) 
- Multivariate index 
- taufloat (if ) or sequence of floats (any ) 
- Multivariate index 
 
- s, tfloats (if 
- Returns
- covariancefloat
- Covariance. 
 
 - Notes - The method makes sense only if the dimension of the process is - . It evaluates - . - In the second usage, the covariance model must be stationary. Then we note - for - as this quantity does not depend on - . 
 - computeCrossCovariance(*args)¶
- computeCrossCovariance the covariance function on a given mesh. - Parameters
- Returns
- MatrixMatrix
- Container of the cross covariance 
 
- Matrix
 - Notes - This method computes a cross-covariance matrix. The cross-covariance is the evaluation of the covariance model on both firstVertices and secondVertices. - If - contains - points and - contains - points, the method returns an - matrix ( - being the output dimension). - To make things easier, let us focus on the - case. Let - be the points of firstVertices and let - be the points of secondVertices. The result is the - matrix - such that for any nonnegative integers - and - , - . 
 - discretize(*args)¶
- Discretize the covariance function on a given mesh. - Parameters
- whereMeshorRegularGridorSample
- Container of the discretization vertices 
 
- where
- Returns
- covarianceMatrixCovarianceMatrix
- Covariance matrix - (if the process is of dimension - ) 
 
- covarianceMatrix
 - Notes - This method makes a discretization of the model on the given - Mesh,- RegularGridor- Samplecomposed of the vertices- and returns the covariance matrix: 
 - discretizeAndFactorize(*args)¶
- Discretize and factorize the covariance function on a given mesh. - Parameters
- whereMeshorRegularGridorSample
- Container of the discretization vertices 
 
- where
- Returns
- CholeskyMatrixTriangularMatrix
- Cholesky factor of the covariance matrix - (if the process is of dimension - ) 
 
- CholeskyMatrix
 - Notes - This method makes a discretization of the model on the given - Mesh,- RegularGridor- Samplecomposed of the vertices- thanks to the - discretize()method and returns its Cholesky factor.
 - discretizeAndFactorizeHMatrix(*args)¶
- Discretize and factorize the covariance function on a given mesh. - This uses HMatrix. - Parameters
- whereMeshorRegularGridorSample
- Container of the discretization vertices 
- hmatParamHMatrixParameters
- Parameter values for the HMatrix 
 
- where
- Returns
- HMatrixHMatrix
- Cholesk matrix - (if the process is of dimension - ), stored in hierarchical format (H-Matrix) 
 
- HMatrix
 - Notes - This method is similar to the - discretizeAndFactorize()method. This method requires that requires that OpenTURNS has been compiled with the hmat library. The method is helpful for very large parameters (Mesh, grid, Sample) because it compresses data.
 - discretizeHMatrix(*args)¶
- Discretize the covariance function on a given mesh using HMatrix result. - Parameters
- whereMeshorRegularGridorSample
- Container of the discretization vertices 
- hmatParamHMatrixParameters
- Parameter values for the HMatrix 
 
- where
- Returns
- HMatrixHMatrix
- Covariance matrix - (if the process is of dimension - ), stored in hierarchical format (H-Matrix) 
 
- HMatrix
 - Notes - This method is similar to the - discretize()method. This method requires that OpenTURNS has been compiled with the hmat library. The method is helpful for very large parameters (Mesh, grid, Sample) because it compresses data.
 - discretizeRow(vertices, p)¶
- (TODO) 
 - draw(*args)¶
- Draw a specific component of the covariance model with input dimension 1. - Parameters
- rowIndexint, 
- The row index of the component to draw. Default value is 0. 
- columnIndex: int, :math:`0 leq columnIndex < dimension`
- The column index of the component to draw. Default value is 0. 
- tMinfloat
- The lower bound of the range over which the model is plotted. Default value is CovarianceModel-DefaultTMin in - ResourceMap.
- tMaxfloat
- The upper bound of the range over which the model is plotted. Default value is CovarianceModel-DefaultTMax in - ResourceMap.
- pointNumberint, 
- The discretization of the range - over which the model is plotted. Default value is CovarianceModel-DefaultPointNumber in class:~openturns.ResourceMap. 
- asStationarybool
- Flag to tell if the model has to be plotted as a stationary model, ie as a function of the lag - if equals to True, or as a non-stationary model, ie as a function of - if equals to False. Default value is True. 
- correlationFlagbool
- Flag to tell if the model has to be plotted as a correlation function if equals to True or as a covariance function if equals to False. Default value is False. 
 
- rowIndexint, 
- Returns
- graphGraph
- A graph containing a unique curve if asStationary=True and if the model is actually a stationary model, or containing the iso-values of the model if asStationary=False or if the model is nonstationary. 
 
- graph
 
 - getActiveParameter()¶
- Accessor to the active parameter set. - Returns
- activeIndices
- Indices of the active parameters. 
 
- active
 
 - getAmplitude()¶
- Get the amplitude parameter - of the covariance function. - Returns
- amplitudePoint
- The amplitude parameter - of the covariance function. 
 
- amplitude
 
 - getClassName()¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getFullParameter()¶
- Get the full parameters of the covariance function. - Returns
- parameterPoint
- List the full parameter of the covariance function i.e. scale parameter - , the the amplitude parameter - , the Spatial correlation parameter - ; and potential other parameter depending on the model; 
 
- parameter
 
 - getFullParameterDescription()¶
- Get the description full parameters of the covariance function. - Returns
- descriptionDescription
- Description of the full parameter of the covariance function. 
 
- description
 
 - getId()¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getInputDimension()¶
- Get the input dimension - of the covariance function. - Returns
- inputDimensionint
- Spatial dimension - of the covariance function. 
 
 
 - getMarginal(*args)¶
- Get the ith marginal of the model. - Returns
- marginalint or sequence of int
- index of marginal of the model. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - getNuggetFactor()¶
- Accessor to the nugget factor. - This parameter allows smooth predictions from noisy data. The nugget is added to the diagonal of the assumed training covariance (thanks to discretize) and acts as a Tikhonov regularization in the problem. - Returns
- nuggetFactorfloat
- Nugget factor used to model the observation error variance. 
 
 
 - getOutputCorrelation()¶
- Get the spatial correlation matrix - of the covariance function. - Returns
- spatialCorrelationCorrelationMatrix
- Correlation matrix - . 
 
- spatialCorrelation
 
 - getOutputDimension()¶
- Get the dimension - of the covariance function. - Returns
- dint
- Dimension - such that - This is the dimension of the process - . 
 
 
 - getParameter()¶
- Get the parameters of the covariance function. - Returns
- parametersPoint
- List of the scale parameter - and the amplitude parameter - of the covariance function. - The other specific parameters are not included. 
 
- parameters
 
 - getParameterDescription()¶
- Get the description of the covariance function parameters. - Returns
- descriptionParamDescription
- Description of the components of the parameters obtained with the getParameter method.. 
 
- descriptionParam
 
 - getRadius()¶
- Accessor to the radius. - Returns
- radiusfloat, 
- Radius of the sphere on which the covariance model is not zero. 
 
- radiusfloat, 
 
 - getScale()¶
- Get the scale parameter - of the covariance function. - Returns
- scalePoint
- The scale parameter - used in the covariance function. 
 
- scale
 
 - getShadowedId()¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - getVisibility()¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - hasName()¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - hasVisibleName()¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - isDiagonal()¶
- Test whether the model is diagonal or not. - Returns
- isDiagonalbool
- True if the model is diagonal. 
 
 
 - isStationary()¶
- Test whether the model is stationary or not. - Returns
- isStationarybool
- True if the model is stationary. 
 
 - Notes - The covariance function - is stationary when it is invariant by translation: - We note - for - . 
 - parameterGradient(s, t)¶
- Compute the gradient according to the parameters. - Parameters
- s, tsequences of float
- Multivariate index - . 
 
- Returns
- gradientMatrix
- Gradient of the function according to the parameters. 
 
- gradient
 
 - partialGradient(s, t)¶
- Compute the gradient of the covariance function. - Parameters
- s, tfloats or sequences of float
- Multivariate index - . 
 
- Returns
- gradientMatrix
- Gradient of the covariance function. 
 
- gradient
 
 - setActiveParameter(active)¶
- Accessor to the active parameter set. - Parameters
- activesequence of int
- Indices of the active parameters. 
 
 
 - setAmplitude(amplitude)¶
- Set the amplitude parameter - of the covariance function. - Parameters
- amplitudePoint
- The amplitude parameter - to be used in the covariance function. Its size must be equal to the dimension of the covariance function. 
 
- amplitude
 
 - setFullParameter(parameter)¶
- Set the full parameters of the covariance function. - Parameters
- parameterPoint
- List the full parameter of the covariance function i.e. scale parameter - , the the amplitude parameter - , the Spatial correlation parameter - ; and potential other parameter depending on the model; - Must be at least of dimension - . 
 
- parameter
 
 - setName(name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - setNuggetFactor(nuggetFactor)¶
- Set the nugget factor for the variance of the observation error. - Acts on the discretized covariance matrix. - Parameters
- nuggetFactorfloat
- nugget factor to be used to model the variance of the observation error. 
 
 
 - setOutputCorrelation(correlation)¶
- Set the spatial correlation matrix - of the covariance function. - Parameters
- spatialCorrelationCorrelationMatrix
- Correlation matrix - . 
 
- spatialCorrelation
 
 - setParameter(parameter)¶
- Set the parameters of the covariance function. - Parameters
- parametersPoint
- List of the scale parameter - and the amplitude parameter - of the covariance function. - Must be of dimension - . 
 
- parameters
 
 - setRadius(radius)¶
- Accessor to the radius. - Parameters
- radiusfloat, 
- Radius of the sphere on which the covariance model is not zero. 
 
- radiusfloat, 
 
 - setScale(scale)¶
- Set the scale parameter - of the covariance function. - Parameters
- scalePoint
- The scale parameter - to be used in the covariance function. Its size must be equal to the input dimension of the covariance function. 
 
- scale
 
 - setShadowedId(id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - setVisibility(visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
 OpenTURNS
      OpenTURNS