.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_functional_modeling/field_functions/plot_value_function.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_functional_modeling_field_functions_plot_value_function.py: Value function ============== .. GENERATED FROM PYTHON SOURCE LINES 6-32 A value function :math:`f_{value}: \mathcal{D} \times \mathbb{R}^d \rightarrow \mathcal{D} \times \mathbb{R}^q` is a particular field function that lets invariant the mesh of a field and defined by a function :math:`g : \mathbb{R}^d \rightarrow \mathbb{R}^q` such that: .. math:: \begin{aligned} f_{value}(\underline{t}, \underline{x})=(\underline{t}, g(\underline{x}))\end{aligned} Let's note that the input dimension of :math:`f_{value}` still designs the dimension of :math:`\underline{x}` : :math:`d`. Its output dimension is equal to :math:`q`. The creation of the *ValueFunction* object requires the function :math:`g` and the integer :math:`n`: the dimension of the vertices of the mesh :math:`\mathcal{M}`. This data is required for tests on the compatibility of dimension when a composite process is created using the spatial function. The use case illustrates the creation of a spatial (field) function from the function :math:`g: \mathbb{R}^2 \rightarrow \mathbb{R}^2` such as : .. math:: \begin{aligned} g(\underline{x})=(x_1^2, x_1+x_2) \end{aligned} .. GENERATED FROM PYTHON SOURCE LINES 34-40 .. code-block:: default import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt import math as m ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 41-42 Create a mesh .. GENERATED FROM PYTHON SOURCE LINES 42-45 .. code-block:: default N = 100 mesh = ot.RegularGrid(0.0, 1.0, N) .. GENERATED FROM PYTHON SOURCE LINES 46-47 Create the function that acts the values of the mesh .. GENERATED FROM PYTHON SOURCE LINES 47-49 .. code-block:: default g = ot.SymbolicFunction(['x1', 'x2'], ['x1^2', 'x1+x2']) .. GENERATED FROM PYTHON SOURCE LINES 50-51 Create the field function .. GENERATED FROM PYTHON SOURCE LINES 51-53 .. code-block:: default f = ot.ValueFunction(g, mesh) .. GENERATED FROM PYTHON SOURCE LINES 54-55 Evaluate f .. GENERATED FROM PYTHON SOURCE LINES 55-62 .. code-block:: default inF = ot.Normal(2).getSample(N) outF = f(inF) # print input/output at first mesh nodes xy = inF xy.stack(outF) xy[:5] .. raw:: html
X0X1y0y1
00.5240970.54107320.27467771.06517
1-0.5803204-3.1234420.3367717-3.703762
20.07903255-0.40801990.006246144-0.3289873
30.58960830.044584010.3476380.6341923
4-0.5038635-0.69786620.2538784-1.20173


.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.002 seconds) .. _sphx_glr_download_auto_functional_modeling_field_functions_plot_value_function.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_value_function.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_value_function.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_