.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_functional_modeling/field_functions/plot_vertexvalue_function.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_functional_modeling_field_functions_plot_vertexvalue_function.py: Vertex value function ===================== .. GENERATED FROM PYTHON SOURCE LINES 6-29 A vertex value function :math:`f_{vertexvalue}: \mathcal{D} \times \mathbb{R}^d \rightarrow \mathcal{D} \times \mathbb{R}^q` is a particular field function that lets invariant the mesh of a field and defined by a function :math:`h : \mathbb{R}^n \times \mathbb{R}^d \rightarrow \mathbb{R}^q` such that: .. math:: \begin{aligned} f_{vertexvalue}(\underline{t}, \underline{x})=(\underline{t}, h(\underline{t},\underline{x}))\end{aligned} Let's note that the input dimension of :math:`f_{vertexvalue}` still design the dimension of :math:`\underline{x}` : :math:`d`. Its output dimension is equal to :math:`q`. The creation of the *VertexValueFunction* object requires the function :math:`h` and the integer :math:`n`: the dimension of the vertices of the mesh :math:`\mathcal{M}`. This example illustrates the creation of a field from the function :math:`h:\mathbb{R}\times\mathbb{R}^2` such as: .. math:: \begin{aligned} h(\underline{t}, \underline{x})=(t+x_1^2+x_2^2) \end{aligned} .. GENERATED FROM PYTHON SOURCE LINES 32-38 .. code-block:: default import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt import math as m ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 39-40 Create a mesh .. GENERATED FROM PYTHON SOURCE LINES 40-43 .. code-block:: default N = 100 mesh = ot.RegularGrid(0.0, 1.0, N) .. GENERATED FROM PYTHON SOURCE LINES 44-45 Create the function that acts the values of the mesh .. GENERATED FROM PYTHON SOURCE LINES 45-47 .. code-block:: default h = ot.SymbolicFunction(['t', 'x1', 'x2'], ['t+x1^2+x2^2']) .. GENERATED FROM PYTHON SOURCE LINES 48-49 Create the field function .. GENERATED FROM PYTHON SOURCE LINES 49-51 .. code-block:: default f = ot.VertexValueFunction(h, mesh) .. GENERATED FROM PYTHON SOURCE LINES 52-53 Evaluate f .. GENERATED FROM PYTHON SOURCE LINES 53-61 .. code-block:: default inF = ot.Normal(2).getSample(N) outF = f(inF) # print input/output at first 10 mesh nodes txy = mesh.getVertices() txy.stack(inF) txy.stack(outF) txy[:10] .. raw:: html
tX0X1y0
000.007526194-0.12506420.01569769
11-0.29688110.27423181.163341
22-0.04598286-0.74583572.558385
33-0.3495356-1.327494.884405
440.72229060.42912344.705851
55-0.22851410.86866855.806804
66-0.8820221-1.0643567.910816
77-0.91937910.35680157.972565
881.3842770.1787269.948167
99-0.73790170.59774579.901799


.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.002 seconds) .. _sphx_glr_download_auto_functional_modeling_field_functions_plot_vertexvalue_function.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_vertexvalue_function.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_vertexvalue_function.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_