.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_probabilistic_modeling/distributions/plot_quick_start_guide_distributions.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_probabilistic_modeling_distributions_plot_quick_start_guide_distributions.py: Quick start guide ================= .. GENERATED FROM PYTHON SOURCE LINES 6-10 Abstract --------- In this example, we present classes for univariate and multivariate distributions. We demonstrate the probabilistic programming capabilities of the library. For univariate distributions, we show how to compute the probability density, the cumulated probability density and the quantiles. We also show how to create graphics. The `ComposedDistribution` class, which creates a distribution based on its marginals and its copula, is presented. We show how to truncate any distribution with the `TruncatedDistribution` class. .. GENERATED FROM PYTHON SOURCE LINES 12-25 Univariate distribution ----------------------- The library is a probabilistic programming library: it is possible to create a random variable and perform operations on this variable *without* generating a sample. In the OpenTURNS platform, several *univariate distributions* are implemented. The most commonly used are: - `Uniform`, - `Normal`, - `Beta`, - `LogNormal`, - `Exponential`, - `Weibull`. .. GENERATED FROM PYTHON SOURCE LINES 27-34 .. code-block:: default import pylab as plt import openturns.viewer as otv import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 35-39 The uniform distribution ------------------------ Let us create a uniform random variable :math:`\mathcal{U}(2,5)`. .. GENERATED FROM PYTHON SOURCE LINES 41-43 .. code-block:: default uniform = ot.Uniform(2, 5) .. GENERATED FROM PYTHON SOURCE LINES 44-45 The `drawPDF` method plots the probability density function. .. GENERATED FROM PYTHON SOURCE LINES 47-50 .. code-block:: default graph = uniform.drawPDF() view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_001.png :alt: plot quick start guide distributions :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 51-52 The `computePDF` method computes the probability distribution at a specific point. .. GENERATED FROM PYTHON SOURCE LINES 54-56 .. code-block:: default uniform.computePDF(3.5) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 0.3333333333333333 .. GENERATED FROM PYTHON SOURCE LINES 57-58 The `drawCDF` method plots the cumulated distribution function. .. GENERATED FROM PYTHON SOURCE LINES 60-63 .. code-block:: default graph = uniform.drawCDF() view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_002.png :alt: plot quick start guide distributions :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 64-65 The `computeCDF` method computes the value of the cumulated distribution function a given point. .. GENERATED FROM PYTHON SOURCE LINES 67-69 .. code-block:: default uniform.computeCDF(3.5) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none 0.5 .. GENERATED FROM PYTHON SOURCE LINES 70-71 The `getSample` method generates a sample. .. GENERATED FROM PYTHON SOURCE LINES 73-76 .. code-block:: default sample = uniform.getSample(10) sample .. raw:: html
X0
03.381575
12.455457
22.112089
33.161566
44.26751
54.602825
62.90427
72.935678
84.596476
93.3442


.. GENERATED FROM PYTHON SOURCE LINES 77-78 The most common way to "see" a sample is to plot the empirical histogram. .. GENERATED FROM PYTHON SOURCE LINES 80-84 .. code-block:: default sample = uniform.getSample(1000) graph = ot.HistogramFactory().build(sample).drawPDF() view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_003.png :alt: X0 PDF :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 85-87 Multivariate distributions with or without independent copula ------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 89-95 We can create multivariate distributions by two different methods: - we can also create a multivariate distribution by combining a list of univariate marginal distribution and a copula, - some distributions are defined as multivariate distributions: `Normal`, `Dirichlet`, `Student`. Since the method based on a marginal and a copula is more flexible, we illustrate below this principle. .. GENERATED FROM PYTHON SOURCE LINES 97-98 In the following script, we define a bivariate distribution made of two univariate distributions (Gaussian and uniform) and an independent copula. .. GENERATED FROM PYTHON SOURCE LINES 100-101 The second input argument of the `ComposedDistribution` class is optional: if it is not specified, the copula is independent by default. .. GENERATED FROM PYTHON SOURCE LINES 103-108 .. code-block:: default normal = ot.Normal() uniform = ot.Uniform() distribution = ot.ComposedDistribution([normal, uniform]) distribution .. raw:: html

ComposedDistribution(Normal(mu = 0, sigma = 1), Uniform(a = -1, b = 1), IndependentCopula(dimension = 2))



.. GENERATED FROM PYTHON SOURCE LINES 109-110 We can also use the `IndependentCopula` class. .. GENERATED FROM PYTHON SOURCE LINES 112-118 .. code-block:: default normal = ot.Normal() uniform = ot.Uniform() copula = ot.IndependentCopula(2) distribution = ot.ComposedDistribution([normal, uniform], copula) distribution .. raw:: html

ComposedDistribution(Normal(mu = 0, sigma = 1), Uniform(a = -1, b = 1), IndependentCopula(dimension = 2))



.. GENERATED FROM PYTHON SOURCE LINES 119-120 We see that this produces the same result: in the end of this section, we will change the copula and see what happens. .. GENERATED FROM PYTHON SOURCE LINES 122-123 The `getSample` method produces a sample from this distribution. .. GENERATED FROM PYTHON SOURCE LINES 125-127 .. code-block:: default distribution.getSample(10) .. raw:: html
X0X1
0-1.613947-0.4068471
10.2413744-0.4410861
20.0771823-0.294428
3-0.36508580.9705679
41.998394-0.9066062
5-0.6699183-0.9759509
6-0.8385734-0.5352073
70.53293870.6859457
80.7407017-0.1581027
90.72107140.9109365


.. GENERATED FROM PYTHON SOURCE LINES 128-129 In order to visualize a bivariate sample, we can use the `Cloud` class. .. GENERATED FROM PYTHON SOURCE LINES 131-138 .. code-block:: default sample = distribution.getSample(1000) showAxes = True graph = ot.Graph("X0~N, X1~U", "X0", "X1", showAxes) cloud = ot.Cloud(sample, "blue", "fsquare", "") # Create the cloud graph.add(cloud) # Then, add it to the graph view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_004.png :alt: X0~N, X1~U :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 139-140 We see that the marginals are Gaussian and uniform and that the copula is independent. .. GENERATED FROM PYTHON SOURCE LINES 142-144 Define a plot a copula ---------------------- .. GENERATED FROM PYTHON SOURCE LINES 146-147 The `NormalCopula` class allows one to create a Gaussian copula. Such a copula is defined by its correlation matrix. .. GENERATED FROM PYTHON SOURCE LINES 149-154 .. code-block:: default R = ot.CorrelationMatrix(2) R[0, 1] = 0.6 copula = ot.NormalCopula(R) copula .. raw:: html

NormalCopula(R = [[ 1 0.6 ]
[ 0.6 1 ]])



.. GENERATED FROM PYTHON SOURCE LINES 155-156 We can draw the contours of a copula with the `drawPDF` method. .. GENERATED FROM PYTHON SOURCE LINES 158-161 .. code-block:: default graph = copula.drawPDF() view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_005.png :alt: [X0,X1] iso-PDF :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 162-164 Multivariate distribution with arbitrary copula ----------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 166-167 Now that we know that we can define a copula, we create a bivariate distribution with normal and uniform marginals and an arbitrary copula. We select the the Ali-Mikhail-Haq copula as an example of a non trivial dependence. .. GENERATED FROM PYTHON SOURCE LINES 169-176 .. code-block:: default normal = ot.Normal() uniform = ot.Uniform() theta = 0.9 copula = ot.AliMikhailHaqCopula(theta) distribution = ot.ComposedDistribution([normal, uniform], copula) distribution .. raw:: html

ComposedDistribution(Normal(mu = 0, sigma = 1), Uniform(a = -1, b = 1), AliMikhailHaqCopula(theta = 0.9))



.. GENERATED FROM PYTHON SOURCE LINES 177-184 .. code-block:: default sample = distribution.getSample(1000) showAxes = True graph = ot.Graph("X0~N, X1~U, Ali-Mikhail-Haq copula", "X0", "X1", showAxes) cloud = ot.Cloud(sample, "blue", "fsquare", "") # Create the cloud graph.add(cloud) # Then, add it to the graph view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_006.png :alt: X0~N, X1~U, Ali-Mikhail-Haq copula :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_006.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 185-186 We see that the sample is quite different from the previous sample with independent copula. .. GENERATED FROM PYTHON SOURCE LINES 188-190 Draw several distributions in the same plot ------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 192-193 It is sometimes convenient to create a plot presenting the PDF and CDF on the same graphics. This is possible thanks to Matplotlib. .. GENERATED FROM PYTHON SOURCE LINES 195-202 .. code-block:: default beta = ot.Beta(5, 7, 9, 10) pdfbeta = beta.drawPDF() cdfbeta = beta.drawCDF() exponential = ot.Exponential(3) pdfexp = exponential.drawPDF() cdfexp = exponential.drawCDF() .. GENERATED FROM PYTHON SOURCE LINES 205-215 .. code-block:: default fig = plt.figure(figsize=(12, 4)) ax = fig.add_subplot(2, 2, 1) _ = otv.View(pdfbeta, figure=fig, axes=[ax]) ax = fig.add_subplot(2, 2, 2) _ = otv.View(cdfbeta, figure=fig, axes=[ax]) ax = fig.add_subplot(2, 2, 3) _ = otv.View(pdfexp, figure=fig, axes=[ax]) ax = fig.add_subplot(2, 2, 4) _ = otv.View(cdfexp, figure=fig, axes=[ax]) .. image-sg:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_007.png :alt: plot quick start guide distributions :srcset: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_quick_start_guide_distributions_007.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 216-230 Truncate a distribution ----------------------- Any distribution can be truncated with the `TruncatedDistribution` class. Let :math:`f_X` (resp. :math:`F_X`) the PDF (resp. the CDF) of the real random variable :math:`X`. Let :math:`a` and :math:`b` two reals with :math:`a` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_quick_start_guide_distributions.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_