.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_reliability_sensitivity/sensitivity_analysis/plot_functional_chaos_sensitivity.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_sensitivity_analysis_plot_functional_chaos_sensitivity.py: Sobol' sensitivity indices from chaos ===================================== .. GENERATED FROM PYTHON SOURCE LINES 6-23 In this example we are going to compute global sensitivity indices from a functional chaos decomposition. We study the Borehole function that models water flow through a borehole: .. math:: \frac{2 \pi T_u (H_u - H_l)}{\ln{r/r_w}(1+\frac{2 L T_u}{\ln(r/r_w) r^2_w K_w}\frac{T_u}{T_l})} With parameters: - :math:`r_w`: radius of borehole (m) - :math:`r`: radius of influence (m) - :math:`T_u`: transmissivity of upper aquifer (:math:`m^2/yr`) - :math:`H_u`: potentiometric head of upper aquifer (m) - :math:`T_l`: transmissivity of lower aquifer (:math:`m^2/yr`) - :math:`H_l`: potentiometric head of lower aquifer (m) - :math:`L`: length of borehole (m) - :math:`K_w`: hydraulic conductivity of borehole (:math:`m/yr`) .. GENERATED FROM PYTHON SOURCE LINES 25-31 .. code-block:: default import openturns as ot from operator import itemgetter import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 32-33 borehole model .. GENERATED FROM PYTHON SOURCE LINES 33-48 .. code-block:: default dimension = 8 input_names = ['rw', 'r', 'Tu', 'Hu', 'Tl', 'Hl', 'L', 'Kw'] model = ot.SymbolicFunction(input_names, ['(2*pi_*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))']) coll = [ot.Normal(0.1, 0.0161812), ot.LogNormal(7.71, 1.0056), ot.Uniform(63070.0, 115600.0), ot.Uniform(990.0, 1110.0), ot.Uniform(63.1, 116.0), ot.Uniform(700.0, 820.0), ot.Uniform(1120.0, 1680.0), ot.Uniform(9855.0, 12045.0)] distribution = ot.ComposedDistribution(coll) distribution.setDescription(input_names) .. GENERATED FROM PYTHON SOURCE LINES 49-50 Freeze r, Tu, Tl from model to go faster .. GENERATED FROM PYTHON SOURCE LINES 50-59 .. code-block:: default selection = [1, 2, 4] complement = ot.Indices(selection).complement(dimension) distribution = distribution.getMarginal(complement) model = ot.ParametricFunction( model, selection, distribution.getMarginal(selection).getMean()) input_names_copy = list(input_names) input_names = itemgetter(*complement)(input_names) dimension = len(complement) .. GENERATED FROM PYTHON SOURCE LINES 60-61 design of experiment .. GENERATED FROM PYTHON SOURCE LINES 61-65 .. code-block:: default size = 1000 X = distribution.getSample(size) Y = model(X) .. GENERATED FROM PYTHON SOURCE LINES 66-67 create a functional chaos model .. GENERATED FROM PYTHON SOURCE LINES 67-73 .. code-block:: default algo = ot.FunctionalChaosAlgorithm(X, Y) algo.run() result = algo.getResult() print(result.getResiduals()) print(result.getRelativeErrors()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [2.46602] [0.00725918] .. GENERATED FROM PYTHON SOURCE LINES 74-75 Quick summary of sensitivity analysis .. GENERATED FROM PYTHON SOURCE LINES 75-78 .. code-block:: default sensitivityAnalysis = ot.FunctionalChaosSobolIndices(result) print(sensitivityAnalysis.summary()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none input dimension: 5 output dimension: 1 basis size: 1 mean: [0] std-dev: [0.279277] ------------------------------------------------------------ Index | Multi-indice | Part of variance ------------------------------------------------------------ ------------------------------------------------------------ ------------------------------------------------------------ Component | Sobol index | Sobol total index ------------------------------------------------------------ 0 | 1 | 0 1 | 0 | 0 2 | 0 | 0 3 | 0 | 0 4 | 0 | 0 ------------------------------------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 79-80 draw Sobol' indices .. GENERATED FROM PYTHON SOURCE LINES 80-87 .. code-block:: default first_order = [sensitivityAnalysis.getSobolIndex(i) for i in range(dimension)] total_order = [sensitivityAnalysis.getSobolTotalIndex( i) for i in range(dimension)] graph = ot.SobolIndicesAlgorithm.DrawSobolIndices( input_names, first_order, total_order) view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/sensitivity_analysis/images/sphx_glr_plot_functional_chaos_sensitivity_001.png :alt: Sobol' indices :srcset: /auto_reliability_sensitivity/sensitivity_analysis/images/sphx_glr_plot_functional_chaos_sensitivity_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 88-90 We saw that total order indices are close to first order, so the higher order indices must be all quite close to 0 .. GENERATED FROM PYTHON SOURCE LINES 90-96 .. code-block:: default for i in range(dimension): for j in range(i): print(input_names[i] + ' & ' + input_names[j], ":", sensitivityAnalysis.getSobolIndex([i, j])) plt.show() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Hu & rw : 0.0 Hl & rw : 0.0 Hl & Hu : 0.0 L & rw : 0.0 L & Hu : 0.0 L & Hl : 0.0 Kw & rw : 0.0 Kw & Hu : 0.0 Kw & Hl : 0.0 Kw & L : 0.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.415 seconds) .. _sphx_glr_download_auto_reliability_sensitivity_sensitivity_analysis_plot_functional_chaos_sensitivity.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_functional_chaos_sensitivity.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_functional_chaos_sensitivity.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_