.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_numerical_methods/optimization/plot_minmax_by_random_design.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_numerical_methods_optimization_plot_minmax_by_random_design.py: Mix/max search and sensitivity from design ========================================== .. GENERATED FROM PYTHON SOURCE LINES 6-7 In this example, we are going to evaluate the minimum and maximum values of the output variable of interest from a sample and to evaluate the gradient of the limit-state function defining the output variable of interest at a particular point. .. GENERATED FROM PYTHON SOURCE LINES 10-14 .. code-block:: default import openturns as ot ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 15-16 Create the marginal distributions of the parameters. .. GENERATED FROM PYTHON SOURCE LINES 16-23 .. code-block:: default dist_E = ot.Beta(0.93, 2.27, 2.8e7, 4.8e7) dist_F = ot.LogNormalMuSigma(30000, 9000, 15000).getDistribution() dist_L = ot.Uniform(250, 260) dist_I = ot.Beta(2.5, 1.5, 3.1e2, 4.5e2) marginals = [dist_E, dist_F, dist_L, dist_I] distribution = ot.ComposedDistribution(marginals) .. GENERATED FROM PYTHON SOURCE LINES 24-25 Sample the inputs. .. GENERATED FROM PYTHON SOURCE LINES 25-27 .. code-block:: default sampleX = distribution.getSample(100) .. GENERATED FROM PYTHON SOURCE LINES 28-29 Create the model. .. GENERATED FROM PYTHON SOURCE LINES 29-31 .. code-block:: default model = ot.SymbolicFunction(["E", "F", "L", "I"], ["F*L^3/(3*E*I)"]) .. GENERATED FROM PYTHON SOURCE LINES 32-33 Evaluate the outputs. .. GENERATED FROM PYTHON SOURCE LINES 33-35 .. code-block:: default sampleY = model(sampleX) .. GENERATED FROM PYTHON SOURCE LINES 36-37 Get minimum and maximum values of both inputs and output variables. .. GENERATED FROM PYTHON SOURCE LINES 37-44 .. code-block:: default minY = sampleY.getMin() minX = sampleX[sampleY.find(minY)] print("min: y=", minY, " with x=", minX) maxY = sampleY.getMax() maxX = sampleX[sampleY.find(maxY)] print("max: y=", maxY, " with x=", maxX) .. rst-class:: sphx-glr-script-out .. code-block:: none min: y= [6.29159] with x= [3.92555e+07,20223.5,252.558,439.701] max: y= [22.697] with x= [2.83872e+07,48017.6,258.667,429.94] .. GENERATED FROM PYTHON SOURCE LINES 45-46 Get sensitivity at minimum input values. .. GENERATED FROM PYTHON SOURCE LINES 46-47 .. code-block:: default model.gradient(minX) .. raw:: html

[[ -1.60273e-07 ]
[ 0.000311102 ]
[ 0.0747344 ]
[ -0.0143088 ]]



.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.004 seconds) .. _sphx_glr_download_auto_numerical_methods_optimization_plot_minmax_by_random_design.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_minmax_by_random_design.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_minmax_by_random_design.ipynb `