.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_reliability_sensitivity/reliability/plot_flood_model.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_reliability_plot_flood_model.py: Estimate a flooding probability =============================== .. GENERATED FROM PYTHON SOURCE LINES 6-7 In this example, we estimate the probability that the output of a function exceeds a given threshold with the FORM method. We consider the :ref:`flooding model `. .. GENERATED FROM PYTHON SOURCE LINES 10-12 Define the model ---------------- .. GENERATED FROM PYTHON SOURCE LINES 14-21 .. code-block:: Python from openturns.usecases import flood_model import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 22-23 We load the flooding model from the usecases module : .. GENERATED FROM PYTHON SOURCE LINES 23-25 .. code-block:: Python fm = flood_model.FloodModel() .. GENERATED FROM PYTHON SOURCE LINES 26-27 We load the joint probability distribution of the input parameters. .. GENERATED FROM PYTHON SOURCE LINES 27-29 .. code-block:: Python distribution = fm.distribution .. GENERATED FROM PYTHON SOURCE LINES 30-31 We create the model. .. GENERATED FROM PYTHON SOURCE LINES 33-35 .. code-block:: Python model = fm.model .. GENERATED FROM PYTHON SOURCE LINES 36-38 Define the event ---------------- .. GENERATED FROM PYTHON SOURCE LINES 40-41 Then we create the event whose probability we want to estimate. .. GENERATED FROM PYTHON SOURCE LINES 43-48 .. code-block:: Python vect = ot.RandomVector(distribution) G = ot.CompositeRandomVector(model, vect) event = ot.ThresholdEvent(G, ot.Greater(), 0.0) event.setName("overflow") .. GENERATED FROM PYTHON SOURCE LINES 49-51 Estimate the probability with FORM ---------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 53-54 Define a solver. .. GENERATED FROM PYTHON SOURCE LINES 56-63 .. code-block:: Python optimAlgo = ot.Cobyla() optimAlgo.setMaximumEvaluationNumber(1000) optimAlgo.setMaximumAbsoluteError(1.0e-10) optimAlgo.setMaximumRelativeError(1.0e-10) optimAlgo.setMaximumResidualError(1.0e-10) optimAlgo.setMaximumConstraintError(1.0e-10) .. GENERATED FROM PYTHON SOURCE LINES 64-65 Run FORM. .. GENERATED FROM PYTHON SOURCE LINES 67-73 .. code-block:: Python startingPoint = distribution.getMean() algo = ot.FORM(optimAlgo, event, startingPoint) algo.run() result = algo.getResult() standardSpaceDesignPoint = result.getStandardSpaceDesignPoint() .. GENERATED FROM PYTHON SOURCE LINES 74-75 Retrieve results. .. GENERATED FROM PYTHON SOURCE LINES 77-81 .. code-block:: Python result = algo.getResult() probability = result.getEventProbability() print("Pf=", probability) .. rst-class:: sphx-glr-script-out .. code-block:: none Pf= 1.1322019024606214e-06 .. GENERATED FROM PYTHON SOURCE LINES 82-83 Importance factors. .. GENERATED FROM PYTHON SOURCE LINES 85-88 .. code-block:: Python graph = result.drawImportanceFactors() view = viewer.View(graph) plt.show() .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_flood_model_001.png :alt: Importance Factors from Design Point - overflow :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_flood_model_001.png :class: sphx-glr-single-img .. _sphx_glr_download_auto_reliability_sensitivity_reliability_plot_flood_model.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_flood_model.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_flood_model.py `