TensorizedUniVariateFunctionFactory¶

class TensorizedUniVariateFunctionFactory(*args)

Base class for tensorized multivariate functions.

Available constructors:

TensorizedUniVariateFunctionFactory(functions)

TensorizedUniVariateFunctionFactory(functions, enumerateFunction)

Parameters:
functionslist of UniVariateFunctionFamily

List of univariate function factories.

enumerateFunctionEnumerateFunction

Associates to an integer its multi-index image in the dimension, which is the dimension of the basis. This multi-index represents the collection of degrees of the univariate polynomials.

Notes

TensorizedUniVariateFunctionFactory allows one to create multidimensional functions as the tensor product of univariate functions created by their respective factories (i.e. UniVariateFunctionFamily):

where is the univariate basis of degree associated to the component and is the ith component of the multi-index

Let’s note that the exact hessian and gradient have been implemented for the product of polynomials.

Examples

>>> import openturns as ot
>>> funcColl = [ot.HaarWaveletFactory(), ot.FourierSeriesFactory(), ot.MonomialFunctionFactory()]
>>> dim = len(funcColl)
>>> enumerateFunction = ot.LinearEnumerateFunction(dim)
>>> productBasis = ot.TensorizedUniVariateFunctionFactory(funcColl, enumerateFunction)


Methods

 build(index) Build the element of the given index. Accessor to the object's name. Accessor to the object's id. Get the input dimension of the Basis. Accessor to the object's name. Get the output dimension of the Basis. Accessor to the object's shadowed id. Get the size of the Basis. getSubBasis(indices) Get a sub-basis of the Basis. Accessor to the object's visibility state. Test if the object is named. Test if the object has a distinguishable name. Tell whether the basis is finite. Tell whether the basis is orthogonal. setName(name) Accessor to the object's name. Accessor to the object's shadowed id. setVisibility(visible) Accessor to the object's visibility state.
 add getDimension getEnumerateFunction getFunctionFamilyCollection setEnumerateFunction setFunctionFamilyCollection
__init__(*args)
build(index)

Build the element of the given index.

Parameters:
indexint,

Index of an element of the Basis.

Returns:
functionFunction

The function at the index index of the Basis.

Examples

>>> import openturns as ot
>>> dimension = 3
>>> input = ['x0', 'x1', 'x2']
>>> functions = []
>>> for i in range(dimension):
...     functions.append(ot.SymbolicFunction(input, [input[i]]))
>>> basis = ot.Basis(functions)
>>> print(basis.build(0).getEvaluation())
[x0,x1,x2]->[x0]

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getInputDimension()

Get the input dimension of the Basis.

Returns:
inDimint

Input dimension of the Basis.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOutputDimension()

Get the output dimension of the Basis.

Returns:
outDimint

Output dimension of the Basis.

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getSize()

Get the size of the Basis.

Returns:
sizeint

Size of the Basis.

getSubBasis(indices)

Get a sub-basis of the Basis.

Parameters:
indiceslist of int

Indices of the terms of the Basis put in the sub-basis.

Returns:
subBasislist of Function

Functions defining a sub-basis.

Examples

>>> import openturns as ot
>>> dimension = 3
>>> input = ['x0', 'x1', 'x2']
>>> functions = []
>>> for i in range(dimension):
...     functions.append(ot.SymbolicFunction(input, [input[i]]))
>>> basis = ot.Basis(functions)
>>> subbasis = basis.getSubBasis([1])
>>> print(subbasis[0].getEvaluation())
[x0,x1,x2]->[x1]

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

isFinite()

Tell whether the basis is finite.

Returns:
isFinitebool

True if the basis is finite.

isOrthogonal()

Tell whether the basis is orthogonal.

Returns:
isOrthogonalbool

True if the basis is orthogonal.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.

Examples using the class¶

Create multivariate functions

Create multivariate functions