LogisticModel¶
- class LogisticModel(t0=1790.0, y0=3900000.0, a=0.03134, b=1.5887e-10, populationFactor=1000000.0)¶
- Data class for the logistic model. - In the physical model, the inputs and parameters are ordered as presented in the next table. Notice that there are no parameters in the physical model. - Index - Input variable - 0 - t1 - 1 - t2 - … - … - 21 - t22 - 22 - a - 23 - c - Examples - >>> from openturns.usecases import logistic_model >>> # Load the logistic model >>> lm = logistic_model.LogisticModel() >>> print(lm.data[:5]) [ Time U.S. Population ] 0 : [ 1790 3.9 ] 1 : [ 1800 5.3 ] 2 : [ 1810 7.2 ] 3 : [ 1820 9.6 ] 4 : [ 1830 13 ] >>> print("Inputs:", lm.model.getInputDescription()) Inputs: [t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t17,t18,t19,t20,t21,a,c]#24 >>> print("Outputs:", lm.model.getOutputDescription()) Outputs: [z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16,z17,z18,z19,z20,z21]#22 - Attributes:
- t0float, optional
- Initial time. The default is 1790. 
- y0float, optional
- Initial population (at t0). The default is 3.9e6. 
- afloat, optional
- 8Parameter of the model. The default is 0.03134. 
- bfloat, optional
- Parameter of the model. The default is 1.5887e-10. 
- populationFactorfloat, optional
- The multiplication factor to scale the population. The default is 1.0e6. 
- distY0Normaldistribution
- ot.Normal(y0, 0.1 * y0) 
- distANormaldistribution
- ot.Normal(a, 0.3 * a) 
- distBNormaldistribution
- ot.Normal(b, 0.3 * b) 
- distXComposedDistribution
- The joint distribution of the input parameters. 
- modelPythonFunction
- The logistic model of growth. The input has input dimension 24 and output dimension 22. More precisely, we have - and - . 
- dataSampleof size 22 and dimension 2
- A data set containing 22 dates from 1790 to 2000. First marginal represents dates and second marginal the population in millions. 
 
 - __init__(t0=1790.0, y0=3900000.0, a=0.03134, b=1.5887e-10, populationFactor=1000000.0)¶
 
 OpenTURNS
      OpenTURNS
     
