Estimate a flooding probability

In this example, we estimate the probability that the output of a function exceeds a given threshold with the FORM method. We consider the flooding model.

Define the model

from openturns.usecases import flood_model
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt

ot.Log.Show(ot.Log.NONE)

We load the flooding model from the usecases module :

fm = flood_model.FloodModel()
distribution = fm.distribution
model = fm.model.getMarginal(1)

See the input distribution

distribution
ComposedDistribution
  • name=ComposedDistribution
  • dimension: 8
  • description=[Q (m3/s),Ks,Zv (m),Zm (m),B (m),L (m),Zb (m),Hd (m)]
  • copula: IndependentCopula(dimension = 8)
Index Variable Distribution
0 Q (m3/s) TruncatedDistribution(Gumbel(beta = 558, gamma = 1013), bounds = [0, (19000.8) +inf[)
1 Ks TruncatedDistribution(Normal(mu = 30, sigma = 7.5), bounds = [0, (87.3797) +inf[)
2 Zv (m) Uniform(a = 49, b = 51)
3 Zm (m) Uniform(a = 54, b = 56)
4 B (m) Triangular(a = 295, m = 300, b = 305)
5 L (m) Triangular(a = 4990, m = 5000, b = 5010)
6 Zb (m) Triangular(a = 55, m = 55.5, b = 56)
7 Hd (m) Uniform(a = 2, b = 4)


See the model

model.getOutputDescription()
[S]


Draw the distribution of a sample of the output.

sampleSize = 1000
inputSample = distribution.getSample(sampleSize)
outputSample = model(inputSample)
graph = ot.HistogramFactory().build(outputSample).drawPDF()
_ = viewer.View(graph)
S PDF

Define the event

Then we create the event whose probability we want to estimate.

vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.0)
event.setName("overflow")

Estimate the probability with FORM

Define a solver.

optimAlgo = ot.Cobyla()
optimAlgo.setMaximumEvaluationNumber(1000)
optimAlgo.setMaximumAbsoluteError(1.0e-10)
optimAlgo.setMaximumRelativeError(1.0e-10)
optimAlgo.setMaximumResidualError(1.0e-10)
optimAlgo.setMaximumConstraintError(1.0e-10)

Run FORM.

startingPoint = distribution.getMean()
algo = ot.FORM(optimAlgo, event, startingPoint)
algo.run()
result = algo.getResult()
standardSpaceDesignPoint = result.getStandardSpaceDesignPoint()

Retrieve results.

result = algo.getResult()
probability = result.getEventProbability()
print("Pf=", probability)
Pf= 0.0006501344567730391

Importance factors.

graph = result.drawImportanceFactors()
view = viewer.View(graph)
plt.show()
Importance Factors from Design Point - overflow