BlendedStep

class BlendedStep(*args)

Blended step.

Available constructors:

BlendedStep(epsilon, eta=1.0)

Parameters:
epsilonsequence of float

Finite difference step factors for each dimension.

etapositive float, sequence of positive float with the same dimension as epsilon

Finite difference step offsets for each dimension.

See also

ConstantStep

Notes

BlendedStep defines a list of finite difference steps equal to: epsilon (|x| + eta).

Examples

>>> import openturns as ot
>>> epsilon = [1e-4, 2e-4]
>>> x = [2.0]*2
>>> steps = ot.BlendedStep(epsilon)
>>> print(steps(x))
[0.0003,0.0006]
>>> steps = ot.BlendedStep(epsilon, 0.0)
>>> print(steps(x))
[0.0002,0.0004]
>>> steps = ot.BlendedStep(epsilon, [1.0, 2.0])
>>> print(steps(x))
[0.0003,0.0008]
>>> steps = ot.BlendedStep(epsilon, 2.0)
>>> print(steps(x))
[0.0004,0.0008]

Methods

__call__(inP)

Call self as a function.

getClassName()

Accessor to the object's name.

getEpsilon()

Get the finite difference steps.

getEta()

Get the finite difference step offsets.

getId()

Accessor to the object's id.

getName()

Accessor to the object's name.

getShadowedId()

Accessor to the object's shadowed id.

getVisibility()

Accessor to the object's visibility state.

hasName()

Test if the object is named.

hasVisibleName()

Test if the object has a distinguishable name.

setEpsilon(epsilon)

Set the finite difference steps.

setEta(eta)

Set the finite difference step offsets.

setName(name)

Accessor to the object's name.

setShadowedId(id)

Accessor to the object's shadowed id.

setVisibility(visible)

Accessor to the object's visibility state.

__init__(*args)
getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getEpsilon()

Get the finite difference steps.

Returns:
epsilonPoint

If ConstantStep : Finite difference steps for each dimension.

If BlendedStep : Finite difference step factors for each dimension.

getEta()

Get the finite difference step offsets.

Returns:
etaPoint

Finite difference step offsets for each dimension.

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getShadowedId()

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

setEpsilon(epsilon)

Set the finite difference steps.

Parameters:
epsilonsequence of float

If ConstantStep : Finite difference steps for each dimension.

If BlendedStep : Finite difference step factors for each dimension.

setEta(eta)

Set the finite difference step offsets.

Parameters:
etasequence of positive float

Finite difference step offsets for each dimension.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.

Examples using the class

Estimate moments from Taylor expansions

Estimate moments from Taylor expansions

Use the FORM - SORM algorithms

Use the FORM - SORM algorithms