ConstantBasisFactory¶
- class ConstantBasisFactory(*args)¶
Constant basis factory.
- Parameters:
- dimensioninteger
Input dimension of the basis.
See also
Notes
A factory for constant basis of input dimension dimension.
Examples
>>> import openturns as ot >>> basis = ot.ConstantBasisFactory(2).build() >>> f = ot.AggregatedFunction(basis) >>> x = [2, 3] >>> print(f(x)) [1]
Methods
build
()Build the basis.
Accessor to the object's name.
getId
()Accessor to the object's id.
getName
()Accessor to the object's name.
Accessor to the object's shadowed id.
Accessor to the object's visibility state.
hasName
()Test if the object is named.
Test if the object has a distinguishable name.
setName
(name)Accessor to the object's name.
setShadowedId
(id)Accessor to the object's shadowed id.
setVisibility
(visible)Accessor to the object's visibility state.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getId()¶
Accessor to the object’s id.
- Returns:
- idint
Internal unique identifier.
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getShadowedId()¶
Accessor to the object’s shadowed id.
- Returns:
- idint
Internal unique identifier.
- getVisibility()¶
Accessor to the object’s visibility state.
- Returns:
- visiblebool
Visibility flag.
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- hasVisibleName()¶
Test if the object has a distinguishable name.
- Returns:
- hasVisibleNamebool
True if the name is not empty and not the default one.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setShadowedId(id)¶
Accessor to the object’s shadowed id.
- Parameters:
- idint
Internal unique identifier.
- setVisibility(visible)¶
Accessor to the object’s visibility state.
- Parameters:
- visiblebool
Visibility flag.
Examples using the class¶
Kriging: propagate uncertainties
Kriging : multiple input dimensions
Kriging : cantilever beam model
Kriging the cantilever beam model using HMAT
Kriging : generate trajectories from a metamodel
Kriging: choose a polynomial trend on the beam model
Kriging with an isotropic covariance function
Kriging: metamodel of the Branin-Hoo function
Sequentially adding new points to a kriging
Kriging :configure the optimization solver
Kriging: choose a polynomial trend
Kriging: metamodel with continuous and categorical variables
EfficientGlobalOptimization examples