MetaModelResult

class MetaModelResult(*args)

Data structure containing a metamodel.

Parameters:
sampleX, sampleY2-d sequence of float

Input/output samples

metaModelFunction

Definition of the response surface(s) of the model’s output(s).

residualssequence of float

The residual values defined as follows for each output of the model: \displaystyle \frac{\sqrt{\sum_{i=1}^N (y_i - \hat{y_i})^2}}{N} with y_i the N model’s values and \hat{y_i} the metamodel’s values.

relativeErrorssequence of float

The relative errors defined as follows for each output of the model: \displaystyle \frac{\sum_{i=1}^N (y_i - \hat{y_i})^2}{N \Var{\vect{Y}}} with \vect{Y} the vector of the N model’s values y_i and \hat{y_i} the metamodel’s values.

Notes

Structure created by the method run() of KrigingAlgorithm or FunctionalChaosAlgorithm and obtained thanks to the method getResult() of these classes.

Methods

getClassName()

Accessor to the object's name.

getId()

Accessor to the object's id.

getInputSample()

Accessor to the input sample.

getMetaModel()

Accessor to the metamodel.

getName()

Accessor to the object's name.

getOutputSample()

Accessor to the output sample.

getRelativeErrors()

Accessor to the relative errors.

getResiduals()

Accessor to the residuals.

getShadowedId()

Accessor to the object's shadowed id.

getVisibility()

Accessor to the object's visibility state.

hasName()

Test if the object is named.

hasVisibleName()

Test if the object has a distinguishable name.

setInputSample(sampleX)

Accessor to the input sample.

setMetaModel(metaModel)

Accessor to the metamodel.

setName(name)

Accessor to the object's name.

setOutputSample(sampleY)

Accessor to the output sample.

setRelativeErrors(relativeErrors)

Accessor to the relative errors.

setResiduals(residuals)

Accessor to the residuals.

setShadowedId(id)

Accessor to the object's shadowed id.

setVisibility(visible)

Accessor to the object's visibility state.

__init__(*args)
getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getInputSample()

Accessor to the input sample.

Returns:
inputSampleSample

The input sample.

getMetaModel()

Accessor to the metamodel.

Returns:
metaModelFunction

Metamodel.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOutputSample()

Accessor to the output sample.

Returns:
outputSampleSample

The output sample.

getRelativeErrors()

Accessor to the relative errors.

Returns:
relativeErrorsPoint

The relative errors defined as follows for each output of the model: \displaystyle \frac{\sum_{i=1}^N (y_i - \hat{y_i})^2}{N \Var{\vect{Y}}} with \vect{Y} the vector of the N model’s values y_i and \hat{y_i} the metamodel’s values.

getResiduals()

Accessor to the residuals.

Returns:
residualsPoint

The residual values defined as follows for each output of the model: \displaystyle \frac{\sqrt{\sum_{i=1}^N (y_i - \hat{y_i})^2}}{N} with y_i the N model’s values and \hat{y_i} the metamodel’s values.

getShadowedId()

Accessor to the object’s shadowed id.

Returns:
idint

Internal unique identifier.

getVisibility()

Accessor to the object’s visibility state.

Returns:
visiblebool

Visibility flag.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

hasVisibleName()

Test if the object has a distinguishable name.

Returns:
hasVisibleNamebool

True if the name is not empty and not the default one.

setInputSample(sampleX)

Accessor to the input sample.

Parameters:
inputSampleSample

The input sample.

setMetaModel(metaModel)

Accessor to the metamodel.

Parameters:
metaModelFunction

Metamodel.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setOutputSample(sampleY)

Accessor to the output sample.

Parameters:
outputSampleSample

The output sample.

setRelativeErrors(relativeErrors)

Accessor to the relative errors.

Parameters:
relativeErrorssequence of float

The relative errors defined as follows for each output of the model: \displaystyle \frac{\sum_{i=1}^N (y_i - \hat{y_i})^2}{N \Var{\vect{Y}}} with \vect{Y} the vector of the N model’s values y_i and \hat{y_i} the metamodel’s values.

setResiduals(residuals)

Accessor to the residuals.

Parameters:
residualssequence of float

The residual values defined as follows for each output of the model: \displaystyle \frac{\sqrt{\sum_{i=1}^N (y_i - \hat{y_i})^2}}{N} with y_i the N model’s values and \hat{y_i} the metamodel’s values.

setShadowedId(id)

Accessor to the object’s shadowed id.

Parameters:
idint

Internal unique identifier.

setVisibility(visible)

Accessor to the object’s visibility state.

Parameters:
visiblebool

Visibility flag.

Examples using the class

Perform stepwise regression

Perform stepwise regression

Use the ANCOVA indices

Use the ANCOVA indices