.. _taylor_expansion_moments: Taylor expansion moments ------------------------ In this page, we consider the Taylor expansion of a function. One way to evaluate the central dispersion (expectation and variance) of the variable :math:`\uY=\model(\uX)` is to use the Taylor expansion of the function :math:`\model: \Rset^\inputDim \rightarrow \Rset^q` at the mean point :math:`\vect{\mu} = \Expect{\uX}`. Depending on the order of the Taylor expansion (classically first or second order), we get different approximations of the mean and variance of :math:`Y`. We use the notations introduced in :ref:`Taylor Expansion `. In the remainder, let :math:`\Cov \uX` be the covariance matrix of :math:`\uX`, defined by: .. math:: \Cov \uX = \mat{C} where :math:`\mat{C} \in \Rset^{\inputDim \times \inputDim}` is the input covariance matrix: .. math:: c_{ij} = \Expect{\left(X_i - \Expect{X_i}\right)\left(X_j - \Expect{X_j} \right)} for :math:`1 \leq i, j \leq \inputDim`. Notice that each diagonal element of the covariance matrix :math:`c_{ii} = \sigma_i^2`, is equal to the variance of an input variable (:math:`X_i`). Case 1: :math:`\outputDim=1`, :math:`Y = \model(\inputRV) \in \Rset` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this section, we analyse the special case where :math:`q = 1` and :math:`Y = h(\vect{X}) \in \Rset`. The second-order Taylor expansion of :math:`\model` at the point :math:`\ux = \vect{\mu}` is: .. math:: y = \model (\vect{\mu}) + \sum_{i = 1}^\inputDim \left( \frac{\partial \model }{\partial x_i }\right)(\vect{\mu})(x_i-\mu_i) + \frac{1}{2} \sum_{i,j = 1}^\inputDim \left(\frac{\partial^2 \model }{\partial x_i \partial x_j}\right)(\vect{\mu}) (x_i-\mu_i)(x_j-\mu_j) + o\left(\|\vect{x}\|^2\right). when :math:`\vect{x} \rightarrow \vect{\mu}`. The expectation and variance of the first-order expansion are: .. math:: \Expect{Y} \approx \model (\vect{\mu})\\ \Var{Y} \approx \sum_{i=1}^\inputDim \sigma_i^2 \left(\left(\frac{\partial \model }{\partial x_i} \right)(\vect{\mu}) \right)^2 In the special case where the inputs are independent, then the variance expression is simplified and we get: .. math:: \Expect{Y} \approx \model (\vect{\mu})\\ \Var{Y} \approx \sum_{i=1}^\inputDim \sigma_i^2 \left( \left(\frac{\partial \model }{\partial x_i} \right)(\vect{\mu}) \right)^2 The expectation of the second-order expansion is: .. math:: \Expect{Y} \approx \model (\vect{\mu}) + \frac{1}{2} \sum_{i,j=1}^\inputDim c_{ij}\left(\frac{\partial^2 \model} {\partial x_i \partial x_j}\right)(\vect{\mu}). The second-order approximation of the variance is not implemented because it requires both the knowledge of higher order derivatives of :math:`\model` and the knowledge of moments of order strictly greater than 2 of the distribution of :math:`\uX`. Case 2: :math:`\outputDim>1`, :math:`Y =(Y_1, \dots, Y_{\outputDim}) \in \Rset^{\outputDim}` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this section, we present the general case where :math:`\outputDim > 1` and :math:`Y =(Y_1, \dots, Y_{\outputDim}) \in \Rset^{\outputDim}`. The second-order Taylor expansion of :math:`\model = (\model_1, \dots, \model_{\outputDim})` at the point :math:`\ux = \vect{\mu}` for each marginal function :math:`\model_k` is: .. math:: y_k = \model_k(\vect{\mu}) + \sum_{i = 1}^\inputDim \left( \frac{\partial \model_k}{\partial x_i }\right)(\vect{\mu}) (x_i-\mu_i)+ \frac{1}{2} \sum_{i,j = 1}^\inputDim \left( \frac{\partial^2 \model_k}{\partial x_i \partial x_j}\right)(\vect{\mu})(x_i-\mu_i)(x_j-\mu_j) + o(\|\vect{x}\|^2). where :math:`1\leq k \leq \outputDim`. The expectation and covariance matrix of the first-order expansion are: .. math:: \Expect{\uY} & \approx \model(\vect{\mu})\\ \Cov \uY & \approx \left( \sum_{i,j=1}^\inputDim c_{ij} \left( \frac{\partial \model_k}{\partial x_i } \right)(\vect{\mu})\left( \frac{\partial \model_\ell}{\partial x_j }\right)(\vect{\mu})\right)_{k, \ell} for :math:`1\leq k \leq \outputDim`. The expectation of the second-order expansion is: .. math:: (\Expect{\uY})_k = \Expect{Y_k} \approx \model_k(\vect{\mu}) + \frac{1}{2} \sum_{i,j=1}^\inputDim c_{ij}\left( \frac{\partial^2 \model_k}{\partial x_i \partial x_j}\right)(\vect{\mu}) for :math:`1\leq k \leq \outputDim`. The second-order approximation of the variance is not implemented because it requires both the knowledge of higher order derivatives of :math:`\model` and the knowledge of moments of order strictly greater than 2 of the probability density function. .. topic:: API: - See :class:`~openturns.TaylorExpansionMoments` .. topic:: Examples: - See :doc:`/auto_reliability_sensitivity/central_dispersion/plot_estimate_moments_taylor`