.. _use-case-stiffened-panel: Stiffened panel buckling ======================== Introduction ------------ The following figure presents a stiffed panel subject to buckling on a military aircraft. This use-case implements a simplified model of buckling for a stiffened panel (see [ko1994]_). .. figure:: ../_static/stiffened_panel_illustration.jpg :align: center :alt: buckling illustration :width: 100% **Figure 1.** Buckling of a stiffened panel. .. figure:: ../_static/stiffened_panel_simulation.png :align: center :alt: buckling simulation :width: 100% **Figure 2.** 3D simulation of buckling. .. figure:: ../_static/stiffened_panel_description.png :align: center :alt: stiffened panel geometry :width: 100% **Figure 3.** Parameterization of the stiffened panel. This test case is composed of nine random variables: - :math:`E\sim\mathcal{TN}(\num{110.0e9}, \num{55.0e9}, \num{99.0e9}, \num{121.0e9})` : Young modulus (:math:`\unit{\Pa}`) - :math:`nu\sim\mathcal{U}(0.3675, 0.3825)` : Poisson coefficient (-) - :math:`h_c\sim\mathcal{U}(0.0285, 0.0315)` : Distance between the mean surface of the hat and the foot of the Stiffener (:math:`\unit{m}`) - :math:`\ell\sim\mathcal{U}(0.04655, 0.05145)` : Length of the stiffener side (:math:`\unit{m}`) - :math:`f_1\sim\mathcal{U}(0.0266, 0.0294)` : Width of the stiffener foot (:math:`\unit{m}`) - :math:`f_2\sim\mathcal{U}(0.00627, 0.00693)` : Width of the stiffener hat (:math:`\unit{m}`) - :math:`t\sim\mathcal{U}(\num{8.02e-5}, \num{8.181e-5})` : Thickness of the panel and the stiffener (:math:`\unit{m}`) - :math:`a\sim\mathcal{U}(0.6039, 0.6161)` : Width of the panel (:math:`\unit{m}`) - :math:`b_0\sim\mathcal{U}(0.04455, 0.04545)` : Distance between two stiffeners (:math:`\unit{m}`) - :math:`p\sim\mathcal{U}(0.03762, 0.03838)` : Half-width of the stiffener (:math:`\unit{m}`) The output of interest is: - :math:`(N_{xy})_{cr}`: the critical shear force (:math:`\unit{N}`) We assume that the input variables are independent except the :math:`f_1` and :math:`f_2` for which we measure a Spearman correlation of :math:`\rho^S_{12}=-0.8`, modelled using a :class:`~openturns.NormalCopula`. The critical load :math:`(\tau_{xy})_{cr}` of a stiffened panel subject to shear load is: .. math:: (\tau_{xy})_{cr}=k_{xy}\frac{\pi^2D}{b_0^2t_s} where: - :math:`a` is the width of the panel; - :math:`b_0` is the width between too consecutive stiffener feet; - :math:`t_s` is the thickness of the panel main surface; - :math:`E_s` is the Young modulus of the panel main surface; - :math:`\nu_s` is the Poisson coefficient of the panel main surface; - :math:`D` is the bending coefficient of the panel main surface: .. math: D = \frac{E_st_s^3}{12(1-\nu_s^2)}; - :math:`k_{xy}` is the load factor associated to shear buckling. It is given as a function of :math:`\frac{b_0}{a}` through the empirical equation: .. math:: k_{xy} = 5.35 + 4 \left(\frac{b_0}{a}\right)^2. It is more convenient to use the shear force :math:`N_{xy}` instead of the shear stress component :math:`\tau_{xy}`. It leads to the equation: .. math:: N_{xy}=q_1+q_c where :math:`q_1` abd :math:`q_c` are the shear fluxes in the panel main surface and its stiffener. They are given by: .. math:: q_1=\tau_{xy}t_s=2G_sh_0t_s\frac{\partial^2w}{\partial x\partial y} and: .. math:: q_c=\frac{G_ct_cp}{\ell} \left(h - 2h_0 + \frac{h_c}{2p}(f_1-f_2)\right) \frac{\partial^2w}{\partial x\partial y} where: - :math:`G_s` is the shear modulus of the panel main surface: .. math:: G_s = \frac{E_s}{2(1 + \nu_s)}; - :math:`\frac{\partial^2w}{\partial x\partial y}` is the torsion strain of the panel main surface; - :math:`G_c` is the shear coefficient of the stiffener: .. math:: G_c = \frac{E_c}{2(1 + \nu_c)}; - :math:`t_c` is the thickness of the stiffener; - :math:`h_c` is the distance between the mean surfaces of the stiffener hat and foot; - :math:`h` is the distance between the mean surfaces of the stiffener hat and the panel main surface: .. math:: h = h_c+\frac{t_c + t_s}{2}; - :math:`f_1` is the width of the foot of the stiffener; - :math:`f_2` is the width of the hat of the stiffener; - :math:`p` is the half-widht of the stiffener; - :math:`R` is the radius of the circular part of the stiffener; - :math:`\theta` is the angle of the circular part of the stiffener; - :math:`\ell` is the length of the stiffener flank; - :math:`d=\frac{\ell-f_2}{2}-R\theta` is the half-lenght of the straight part of the side of the stiffener; - :math:`A=\ell t_c` is the area of the section of an half-ondulation; - :math:`\bar{A}` is the area of the section of the full panel (main surface and stiffener) bounded by :math:`p`: .. math:: \bar{A} = A + pt_s + \frac{1}{2}(f_1 - f_2)t_c - :math:`h_0` is the distance between the mean surface of the panel main surface and the global geometric center of the panel: .. math:: h_0 = \frac{1}{2\bar{A}} \left(A(h_c+t_c+t_s)+\frac{1}{2}t_c(f_1-f_2)(t_c+t_s)\right). It leads to: .. math:: N_{xy}=q_1(1+q_c/q_1) = \tau_{xy}t_s \left(1 + \frac{1}{4}\frac{G_ct_c}{G_st_s} \frac{2p(h-2h_0) - h_c(f_1-f_2)}{h_0\ell}\right) and finally, :math:`(N_{xy})_{cr}` is given by: .. math:: (N_{xy})_{cr}=\left(5.35 + 4\left(\frac{b_0}{a}\right)^2\right)\left(\frac{\pi^2}{b_0^2}\frac{E_st_s^3}{12(1-\nu_s^2)}\right)\left(1+\frac{1}{4}\frac{G_ct_c}{G_st_s}\frac{2p(h-2h_0)-h_c(f_1-f_2)}{h_0\ell}\right) For industrial constraints, the stiffener and the main surface are cut in the same metal sheet, so :math:`E_c=E_s=E`, :math:`\nu_c=\nu_s=\nu`, :math:`t_c=t_s=t`. The final expression of the critical shear force is then: .. math:: (N_{xy})_{cr}=\left(5.35 + 4\left(\frac{b_0}{a}\right)^2\right)\left(\frac{\pi^2}{b_0^2}\frac{Et^3}{12(1-\nu^2)}\right)\left(1+\frac{1}{4}\frac{2p(h-2h_0)-h_c(f_1-f_2)}{h_0\ell}\right) with: - :math:`A=\ell t`; - :math:`\bar{A}=A+t\left(p+\frac{f_1-f_2}{2}\right)`; - :math:`h_0=\frac{A(h_c+2t)+t^2(f_1-f_2)}{2\bar{A}}`; - :math:`h=h_c+t`. References ---------- * [ko1994]_ Load the use case ----------------- We can load this model from the use cases module as follows : .. code-block:: python >>> from openturns.usecases import stiffened_panel >>> sp = stiffened_panel.StiffenedPanel() >>> # Load the stiffened panel use case >>> model = sp.model() API documentation ----------------- .. currentmodule:: openturns.usecases.stiffened_panel .. autoclass:: StiffenedPanel :noindex: Examples based on this use case ------------------------------- .. minigallery:: openturns.usecases.stiffened_panel.StiffenedPanel