.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_reliability_sensitivity/reliability/plot_axial_stressed_beam.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_reliability_plot_axial_stressed_beam.py: Axial stressed beam : comparing different methods to estimate a probability =========================================================================== .. GENERATED FROM PYTHON SOURCE LINES 6-13 In this example, we compare four methods to estimate the probability in the :ref:`axial stressed beam ` example : * Monte-Carlo simulation, * FORM, * directional sampling, * importance sampling with FORM design point: FORM-IS. .. GENERATED FROM PYTHON SOURCE LINES 15-17 Define the model ---------------- .. GENERATED FROM PYTHON SOURCE LINES 19-27 .. code-block:: Python import numpy as np from openturns.usecases import stressed_beam import openturns as ot import openturns.viewer as viewer ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 28-29 We load the model from the usecases module : .. GENERATED FROM PYTHON SOURCE LINES 29-31 .. code-block:: Python sm = stressed_beam.AxialStressedBeam() .. GENERATED FROM PYTHON SOURCE LINES 32-33 The limit state function is defined in the `model` field of the data class : .. GENERATED FROM PYTHON SOURCE LINES 33-35 .. code-block:: Python limitStateFunction = sm.model .. GENERATED FROM PYTHON SOURCE LINES 36-38 The probabilistic model of the axial stressed beam is defined in the data class. We get the first marginal and draw it : .. GENERATED FROM PYTHON SOURCE LINES 38-42 .. code-block:: Python R_dist = sm.distribution_R graph = R_dist.drawPDF() view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_001.png :alt: plot axial stressed beam :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 43-44 We get the second marginal and draw it : .. GENERATED FROM PYTHON SOURCE LINES 46-50 .. code-block:: Python F_dist = sm.distribution_F graph = F_dist.drawPDF() view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_002.png :alt: plot axial stressed beam :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 51-52 These independent marginals define the joint distribution of the input parameters : .. GENERATED FROM PYTHON SOURCE LINES 52-55 .. code-block:: Python myDistribution = sm.distribution .. GENERATED FROM PYTHON SOURCE LINES 56-57 We create a `RandomVector` from the `Distribution`, then a composite random vector. Finally, we create a `ThresholdEvent` from this `RandomVector`. .. GENERATED FROM PYTHON SOURCE LINES 59-63 .. code-block:: Python inputRandomVector = ot.RandomVector(myDistribution) outputRandomVector = ot.CompositeRandomVector(limitStateFunction, inputRandomVector) myEvent = ot.ThresholdEvent(outputRandomVector, ot.Less(), 0.0) .. GENERATED FROM PYTHON SOURCE LINES 64-66 Using Monte Carlo simulations ----------------------------- .. GENERATED FROM PYTHON SOURCE LINES 68-77 .. code-block:: Python cv = 0.05 NbSim = 100000 experiment = ot.MonteCarloExperiment() algoMC = ot.ProbabilitySimulationAlgorithm(myEvent, experiment) algoMC.setMaximumOuterSampling(NbSim) algoMC.setBlockSize(1) algoMC.setMaximumCoefficientOfVariation(cv) .. GENERATED FROM PYTHON SOURCE LINES 78-79 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 79-81 .. code-block:: Python initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 82-83 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 85-87 .. code-block:: Python algoMC.run() .. GENERATED FROM PYTHON SOURCE LINES 88-97 .. code-block:: Python result = algoMC.getResult() probabilityMonteCarlo = result.getProbabilityEstimate() numberOfFunctionEvaluationsMonteCarlo = ( limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall ) print("Number of calls to the limit state =", numberOfFunctionEvaluationsMonteCarlo) print("Pf = ", probabilityMonteCarlo) print("CV =", result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of calls to the limit state = 13962 Pf = 0.02786133791720385 CV = 0.049990710244531354 .. GENERATED FROM PYTHON SOURCE LINES 98-102 .. code-block:: Python graph = algoMC.drawProbabilityConvergence() graph.setLogScale(ot.GraphImplementation.LOGX) view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_003.png :alt: ProbabilitySimulationAlgorithm convergence graph at level 0.95 :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 103-105 Using LHS simulation -------------------- .. GENERATED FROM PYTHON SOURCE LINES 105-112 .. code-block:: Python experiment = ot.LHSExperiment() experiment.setAlwaysShuffle(True) algo = ot.ProbabilitySimulationAlgorithm(myEvent, experiment) algo.setMaximumOuterSampling(NbSim) algo.setBlockSize(1) algo.setMaximumCoefficientOfVariation(cv) .. GENERATED FROM PYTHON SOURCE LINES 113-114 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 114-116 .. code-block:: Python initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 117-118 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 120-122 .. code-block:: Python algo.run() .. GENERATED FROM PYTHON SOURCE LINES 123-133 .. code-block:: Python resultLHS = algo.getResult() numberOfFunctionEvaluationsLHS = ( limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall ) probabilityLHS = result.getProbabilityEstimate() print("Number of calls to the limit state =", numberOfFunctionEvaluationsLHS) print("Pf = ", probabilityLHS) print("CV =", result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of calls to the limit state = 13262 Pf = 0.02786133791720385 CV = 0.049990710244531354 .. GENERATED FROM PYTHON SOURCE LINES 134-139 .. code-block:: Python graph = algo.drawProbabilityConvergence() graph.setLogScale(ot.GraphImplementation.LOGX) view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_004.png :alt: ProbabilitySimulationAlgorithm convergence graph at level 0.95 :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 140-142 Using FORM analysis ------------------- .. GENERATED FROM PYTHON SOURCE LINES 144-145 We create a NearestPoint algorithm .. GENERATED FROM PYTHON SOURCE LINES 145-154 .. code-block:: Python myCobyla = ot.Cobyla() # Resolution options: eps = 1e-3 myCobyla.setMaximumEvaluationNumber(100) myCobyla.setMaximumAbsoluteError(eps) myCobyla.setMaximumRelativeError(eps) myCobyla.setMaximumResidualError(eps) myCobyla.setMaximumConstraintError(eps) .. GENERATED FROM PYTHON SOURCE LINES 155-156 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 156-158 .. code-block:: Python initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 159-160 We create a FORM algorithm. The first parameter is a NearestPointAlgorithm. The second parameter is an event. The third parameter is a starting point for the design point research. .. GENERATED FROM PYTHON SOURCE LINES 162-164 .. code-block:: Python algoFORM = ot.FORM(myCobyla, myEvent, myDistribution.getMean()) .. GENERATED FROM PYTHON SOURCE LINES 165-166 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 168-170 .. code-block:: Python algoFORM.run() .. GENERATED FROM PYTHON SOURCE LINES 171-179 .. code-block:: Python resultFORM = algoFORM.getResult() numberOfFunctionEvaluationsFORM = ( limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall ) probabilityFORM = resultFORM.getEventProbability() print("Number of calls to the limit state =", numberOfFunctionEvaluationsFORM) print("Pf =", probabilityFORM) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of calls to the limit state = 98 Pf = 0.02998278558231473 .. GENERATED FROM PYTHON SOURCE LINES 180-183 .. code-block:: Python graph = resultFORM.drawImportanceFactors() view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_005.png :alt: Importance Factors from Design Point - Unnamed :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 184-186 Using Directional sampling -------------------------- .. GENERATED FROM PYTHON SOURCE LINES 188-189 Resolution options: .. GENERATED FROM PYTHON SOURCE LINES 189-197 .. code-block:: Python cv = 0.05 NbSim = 10000 algoDS = ot.DirectionalSampling(myEvent) algoDS.setMaximumOuterSampling(NbSim) algoDS.setBlockSize(1) algoDS.setMaximumCoefficientOfVariation(cv) .. GENERATED FROM PYTHON SOURCE LINES 198-199 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 199-201 .. code-block:: Python initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 202-203 Perform the analysis. .. GENERATED FROM PYTHON SOURCE LINES 205-207 .. code-block:: Python algoDS.run() .. GENERATED FROM PYTHON SOURCE LINES 208-220 .. code-block:: Python result = algoDS.getResult() probabilityDirectionalSampling = result.getProbabilityEstimate() numberOfFunctionEvaluationsDirectionalSampling = ( limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall ) print( "Number of calls to the limit state =", numberOfFunctionEvaluationsDirectionalSampling, ) print("Pf = ", probabilityDirectionalSampling) print("CV =", result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of calls to the limit state = 9559 Pf = 0.02774169842680728 CV = 0.049896413802453236 .. GENERATED FROM PYTHON SOURCE LINES 221-225 .. code-block:: Python graph = algoDS.drawProbabilityConvergence() graph.setLogScale(ot.GraphImplementation.LOGX) view = viewer.View(graph) .. image-sg:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_006.png :alt: DirectionalSampling convergence graph at level 0.95 :srcset: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_axial_stressed_beam_006.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 226-228 Using importance sampling with FORM design point: FORM-IS --------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 230-231 The `getStandardSpaceDesignPoint` method returns the design point in the U-space. .. GENERATED FROM PYTHON SOURCE LINES 233-236 .. code-block:: Python standardSpaceDesignPoint = resultFORM.getStandardSpaceDesignPoint() standardSpaceDesignPoint .. raw:: html
class=Point name=Standard Space Design Point dimension=2 values=[-1.59355,0.999463]


.. GENERATED FROM PYTHON SOURCE LINES 237-239 The key point is to define the importance distribution in the U-space. To define it, we use a multivariate standard Gaussian and configure it so that the center is equal to the design point in the U-space. .. GENERATED FROM PYTHON SOURCE LINES 241-244 .. code-block:: Python dimension = myDistribution.getDimension() dimension .. rst-class:: sphx-glr-script-out .. code-block:: none 2 .. GENERATED FROM PYTHON SOURCE LINES 245-249 .. code-block:: Python myImportance = ot.Normal(dimension) myImportance.setMu(standardSpaceDesignPoint) myImportance .. raw:: html
Normal
  • name=Normal
  • dimension=2
  • weight=1
  • range=]-inf (-9.24418), (6.05708) +inf[ ]-inf (-6.65117), (8.65009) +inf[
  • description=[X0,X1]
  • isParallel=true
  • isCopula=false


.. GENERATED FROM PYTHON SOURCE LINES 250-251 Create the design of experiment corresponding to importance sampling. This generates a `WeightedExperiment` with weights corresponding to the importance distribution. .. GENERATED FROM PYTHON SOURCE LINES 253-255 .. code-block:: Python experiment = ot.ImportanceSamplingExperiment(myImportance) .. GENERATED FROM PYTHON SOURCE LINES 256-257 Create the standard event corresponding to the event. This transforms the original problem into the U-space, with Gaussian independent marginals. .. GENERATED FROM PYTHON SOURCE LINES 259-261 .. code-block:: Python standardEvent = ot.StandardEvent(myEvent) .. GENERATED FROM PYTHON SOURCE LINES 262-263 We then create the simulation algorithm. .. GENERATED FROM PYTHON SOURCE LINES 265-269 .. code-block:: Python algo = ot.ProbabilitySimulationAlgorithm(standardEvent, experiment) algo.setMaximumCoefficientOfVariation(cv) algo.setMaximumOuterSampling(40000) .. GENERATED FROM PYTHON SOURCE LINES 270-271 For statistics about the algorithm .. GENERATED FROM PYTHON SOURCE LINES 271-273 .. code-block:: Python initialNumberOfCall = limitStateFunction.getEvaluationCallsNumber() .. GENERATED FROM PYTHON SOURCE LINES 274-276 .. code-block:: Python algo.run() .. GENERATED FROM PYTHON SOURCE LINES 277-278 retrieve results .. GENERATED FROM PYTHON SOURCE LINES 278-287 .. code-block:: Python result = algo.getResult() probabilityFORMIS = result.getProbabilityEstimate() numberOfFunctionEvaluationsFORMIS = ( limitStateFunction.getEvaluationCallsNumber() - initialNumberOfCall ) print("Number of calls to the limit state =", numberOfFunctionEvaluationsFORMIS) print("Pf = ", probabilityFORMIS) print("CV =", result.getCoefficientOfVariation()) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of calls to the limit state = 940 Pf = 0.02909138091879204 CV = 0.049976509617815086 .. GENERATED FROM PYTHON SOURCE LINES 288-290 Conclusion ---------- .. GENERATED FROM PYTHON SOURCE LINES 292-293 We now compare the different methods in terms of accuracy and speed. .. GENERATED FROM PYTHON SOURCE LINES 298-299 The following function computes the number of correct base-10 digits in the computed result compared to the exact result. .. GENERATED FROM PYTHON SOURCE LINES 302-307 .. code-block:: Python def computeLogRelativeError(exact, computed): logRelativeError = -np.log10(abs(exact - computed) / abs(exact)) return logRelativeError .. GENERATED FROM PYTHON SOURCE LINES 308-309 The following function prints the results. .. GENERATED FROM PYTHON SOURCE LINES 312-325 .. code-block:: Python def printMethodSummary(name, computedProbability, numberOfFunctionEvaluations): print("---") print(name, ":") print("Number of calls to the limit state =", numberOfFunctionEvaluations) print("Pf = ", computedProbability) exactProbability = 0.02919819462483051 logRelativeError = computeLogRelativeError(exactProbability, computedProbability) print("Number of correct digits=%.3f" % (logRelativeError)) performance = logRelativeError / numberOfFunctionEvaluations print("Performance=%.2e (correct digits/evaluation)" % (performance)) return .. GENERATED FROM PYTHON SOURCE LINES 326-338 .. code-block:: Python printMethodSummary( "Monte-Carlo", probabilityMonteCarlo, numberOfFunctionEvaluationsMonteCarlo ) printMethodSummary("LHS", probabilityLHS, numberOfFunctionEvaluationsLHS) printMethodSummary("FORM", probabilityFORM, numberOfFunctionEvaluationsFORM) printMethodSummary( "DirectionalSampling", probabilityDirectionalSampling, numberOfFunctionEvaluationsDirectionalSampling, ) printMethodSummary("FORM-IS", probabilityFORMIS, numberOfFunctionEvaluationsFORMIS) .. rst-class:: sphx-glr-script-out .. code-block:: none --- Monte-Carlo : Number of calls to the limit state = 13962 Pf = 0.02786133791720385 Number of correct digits=1.339 Performance=9.59e-05 (correct digits/evaluation) --- LHS : Number of calls to the limit state = 13262 Pf = 0.02786133791720385 Number of correct digits=1.339 Performance=1.01e-04 (correct digits/evaluation) --- FORM : Number of calls to the limit state = 98 Pf = 0.02998278558231473 Number of correct digits=1.571 Performance=1.60e-02 (correct digits/evaluation) --- DirectionalSampling : Number of calls to the limit state = 9559 Pf = 0.02774169842680728 Number of correct digits=1.302 Performance=1.36e-04 (correct digits/evaluation) --- FORM-IS : Number of calls to the limit state = 940 Pf = 0.02909138091879204 Number of correct digits=2.437 Performance=2.59e-03 (correct digits/evaluation) .. GENERATED FROM PYTHON SOURCE LINES 339-353 We see that all three methods produce the correct probability, but not with the same accuracy. In this case, we have found the correct order of magnitude of the probability, i.e. between one and two correct digits. There is, however, a significant difference in computational performance (measured here by the number of function evaluations). * The fastest method is the FORM method, which produces more than 1 correct digit with less than 98 function evaluations with a performance equal to :math:`1.60 \times 10^{-2}` (correct digits/evaluation). A practical limitation is that the FORM method does not produce a confidence interval: there is no guarantee that the computed probability is correct. * The slowest method is Monte-Carlo simulation, which produces more than 1 correct digit with 12806 function evaluations. This is associated with a very slow performance equal to :math:`1.11 \times 10^{-4}` (correct digits/evaluation). The interesting point with the Monte-Carlo simulation is that the method produces a confidence interval. * The DirectionalSampling method is somewhat in-between the two previous methods. * The FORM-IS method produces 2 correct digits and has a small number of function evaluations.i It has an intermediate performance equal to :math:`2.37\times 10^{-3}` (correct digits/evaluation). It combines the best of the both worlds: it has the small number of function evaluation of FORM computation and the confidence interval of Monte-Carlo simulation. .. _sphx_glr_download_auto_reliability_sensitivity_reliability_plot_axial_stressed_beam.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_axial_stressed_beam.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_axial_stressed_beam.py `