.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_stochastic_processes/plot_create_normal_process.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_stochastic_processes_plot_create_normal_process.py: Create a Gaussian process ========================= .. GENERATED FROM PYTHON SOURCE LINES 7-10 .. code-block:: Python import openturns as ot import openturns.viewer as otv .. GENERATED FROM PYTHON SOURCE LINES 11-15 Create a Gaussian process from a covariance model ------------------------------------------------- In this paragraph we build a Gaussian process from its covariance model. .. GENERATED FROM PYTHON SOURCE LINES 18-19 We first define a covariance model : .. GENERATED FROM PYTHON SOURCE LINES 21-29 .. code-block:: Python defaultDimension = 1 # Amplitude values amplitude = [1.0] * defaultDimension # Scale values scale = [1.0] * defaultDimension # Covariance model myModel = ot.AbsoluteExponential(scale, amplitude) .. GENERATED FROM PYTHON SOURCE LINES 30-31 We define a mesh, .. GENERATED FROM PYTHON SOURCE LINES 31-36 .. code-block:: Python tmin = 0.0 step = 0.1 n = 11 myTimeGrid = ot.RegularGrid(tmin, step, n) .. GENERATED FROM PYTHON SOURCE LINES 37-38 and create the process : .. GENERATED FROM PYTHON SOURCE LINES 38-41 .. code-block:: Python process = ot.GaussianProcess(myModel, myTimeGrid) print(process) .. rst-class:: sphx-glr-script-out .. code-block:: none GaussianProcess(trend=[x0]->[0], covariance=AbsoluteExponential(scale=[1], amplitude=[1])) .. GENERATED FROM PYTHON SOURCE LINES 42-43 We draw the first marginal of a sample of size 6 : .. GENERATED FROM PYTHON SOURCE LINES 43-49 .. code-block:: Python sample = process.getSample(6) graph = sample.drawMarginal(0) graph.setTitle("First marginal of six realizations of the process") view = otv.View(graph) .. image-sg:: /auto_stochastic_processes/images/sphx_glr_plot_create_normal_process_001.svg :alt: First marginal of six realizations of the process :srcset: /auto_stochastic_processes/images/sphx_glr_plot_create_normal_process_001.svg :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 50-55 Create a Gaussian process from spectral density ----------------------------------------------- In this paragraph we build a Gaussian process from its spectral density. .. GENERATED FROM PYTHON SOURCE LINES 57-58 We first define a spectral model : .. GENERATED FROM PYTHON SOURCE LINES 58-64 .. code-block:: Python amplitude = [1.0, 2.0] scale = [4.0, 5.0] spatialCorrelation = ot.CorrelationMatrix(2) spatialCorrelation[0, 1] = 0.8 mySpectralModel = ot.CauchyModel(scale, amplitude, spatialCorrelation) .. GENERATED FROM PYTHON SOURCE LINES 65-66 As usual we define a mesh, .. GENERATED FROM PYTHON SOURCE LINES 66-68 .. code-block:: Python myTimeGrid = ot.RegularGrid(0.0, 0.1, 20) .. GENERATED FROM PYTHON SOURCE LINES 69-70 and create the process thereafter .. GENERATED FROM PYTHON SOURCE LINES 70-73 .. code-block:: Python process = ot.SpectralGaussianProcess(mySpectralModel, myTimeGrid) print(process) .. rst-class:: sphx-glr-script-out .. code-block:: none SpectralGaussianProcess=SpectralGaussianProcess dimension=2 spectralModel=class=CauchyModel amplitude=[1,2] scale=[4,5] spatial correlation= [[ 1 0.8 ] [ 0.8 1 ]] maximal frequency=5 n frequency=10 .. GENERATED FROM PYTHON SOURCE LINES 74-75 Eventually we draw the first marginal of a sample of size 6 : .. GENERATED FROM PYTHON SOURCE LINES 75-80 .. code-block:: Python sample = process.getSample(6) graph = sample.drawMarginal(0) graph.setTitle("First marginal of six realizations of the process") view = otv.View(graph) .. image-sg:: /auto_stochastic_processes/images/sphx_glr_plot_create_normal_process_002.svg :alt: First marginal of six realizations of the process :srcset: /auto_stochastic_processes/images/sphx_glr_plot_create_normal_process_002.svg :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 81-82 Display all figures .. GENERATED FROM PYTHON SOURCE LINES 82-83 .. code-block:: Python otv.View.ShowAll() .. _sphx_glr_download_auto_stochastic_processes_plot_create_normal_process.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_create_normal_process.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_create_normal_process.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_create_normal_process.zip `